SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 5 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

Earth's seasonal rhythms are changing, putting species and ecosystems at risk

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 5 hours ago. 1 Reply

Seasonality shapes much of life on Earth. Most species, including humans, have …Continue

What might happen when you take lots of medicines...

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 17 Replies

What might happen when you take lots of medicines...One of our uncles died of liver cirrhosis ten years back. He never touched alcohol in his life. He didn't have any viral infection to cause this.…Continue

Emulsifiers' assault on the microbiome is bad for your health

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply

Researchers say emulsifiers may cause a variety of health problemsThe difference between commerce and science: Commerce wants to sell its products by showing you eye and attention catching ads and…Continue

From soil to slugs to songbirds: How plastic is moving through ecosystems

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply

For many people, "plastic pollution" calls to mind pictures of turtles and other marine life drowning in single-use plastic bottles and discarded fishing nets. My own research looks at how the same…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on January 20, 2022 at 9:32am

Scientists find previously unknown jumping behavior in insects

Comment by Dr. Krishna Kumari Challa on January 19, 2022 at 12:12pm

Research team identifies new mechanism for protecting DNA

Researchers  have identified a new mechanism by which a protein known for repairing damaged DNA also protects the integrity of DNA by preserving its structural shape.

The discovery, involving the protein 53BP1, offers insight into understanding how cells maintain the integrity of DNA in the nucleus, which is critical for preventing diseases like premature aging and cancer.

DNA, or , is the chemical name for the molecule that carries genetic instructions in all living things.

The large protein 53BP1 is known for determining how cells will repair a particular type of DNA damage—DNA double-strand break (DSB), in which the two strands of DNA are both broken, leaving a free DNA end floating around in the cell's nucleus.

When DSB occurs, if it is not repaired, the DNA ends could fuse to what they should not under normal conditions, which could lead to the disruption of genetic information. In the short term, cells with unrepaired DNA may kill themselves off, but if a cell loses this self-surveillance, it may start the journey toward cancer.

In this study, the team discovered that 53BP1 has a  in mediating the structure of DNA, specifically at a highly compacted region called .

The researchers found that this new function involves a new form of activity of 53BP1, in which the protein accumulates at the condensed DNA regions and forms small liquid droplets—a process called liquid-liquid phase separation, similar to mixing oil with water for salad dressing.

The team determined how 53BP1 can form liquid droplets: They found that this process requires the participation of other proteins known to support the structure of the highly condensed DNA. But, in turn, they discovered that 53BP1 actually stabilized the gathering of these proteins at these DNA regions, which is important for keeping the overall function of the DNA.

They then carried out detailed molecular analysis to break the large protein into small pieces and determined which pieces are important for the liquid droplet formation of 53BP1. They further changed amino acid of a specific position of the 53BP1 protein and determined the contribution of several amino acids that are critical for this new function.

With this new information, Zhang and his team hope to better understand how diseases like cancer can be prevented, and even design therapies that use this new feature of 53BP1 to treat cancers in the future.

Lei Zhang et al, 53BP1 regulates heterochromatin through liquid phase separation, Nature Communications (2022). DOI: 10.1038/s41467-022-28019-y

https://phys.org/news/2022-01-team-mechanism-dna.html?utm_source=nw...

Comment by Dr. Krishna Kumari Challa on January 18, 2022 at 11:32am

This  Terrifying NEW Discovery on Neptune Changes Everything!

Comment by Dr. Krishna Kumari Challa on January 18, 2022 at 11:08am

Chal­lenging the the­ory of the nar­row host range of phages

Viruses that infect bacteria could one day replace antibiotics because they precisely attack only specific pathogens. Researchers  are now showing that this is not always the case. This new finding is important because bacterial viruses can transfer antibiotic resistance genes.

Bacteriophages—phages for short—are viruses that infect only bacteria. To capture a bacterial host, they first attach to specific molecules on its cell surface. Then they inject their genetic material into the bacterial cell. In order to reprogram the bacteria's cellular machinery to produce new virus particles, phages also have to outsmart the target bacteria's immune system.

The molecular entry points and the immune system differ from one bacterium to another, so it was commonly believed that most phages have a narrow host range—that is, that they infect only a single bacterial species or even subspecies. This is also what prompted the idea of using natural bacteria killers to treat infections—particularly when the disease-causing bacteria have acquired antibiotic resistances.

However, a new study challenges the theory of the narrow host range of phages. Phages within the Staphylococcus group of bacteria often infect multiple species simultaneously. The researchers recently published their results in the journal Nature Communications.

The findings could have direct consequences for phage therapy, which is not yet approved for use in Switzerland, but has long been in use in eastern Europe. Phages not only kill bacteria, they can also transfer antibiotic resistance genes from one bacterium to another. Accordingly, their unexpectedly broad range of prey means that phages could spread their resistance genes much further in the environment than was previously thought.

The mechanism through which phages can transfer antibiotic resistance among bacteria is already known. In short, when these viruses multiply in the bacterial cells, they not only inject their own genetic material into new virus particles; in some cases, they smuggle genetic material from the infected bacterium—a resistance gene, for instance—into the virus particles. If one of these virus particles then infects a new bacterium, the resistance may be transferred.

Therefore, if we want to assess the role of phages as vectors of antibiotic resistance, we have to look at the whole picture—not just the situation in human medicine. When using phages in medicine, one must be careful that they don't additionally act as vectors of antibiotic resistance genes. It is thus important to ensure that phages used in medicine have a propagation mechanism that functions as flawlessly as possible.

 Pauline C. Göller et al, Multi-species host range of staphylococcal phages isolated from wastewater, Nature Communications (2021). DOI: 10.1038/s41467-021-27037-6

https://phys.org/news/2022-01-theory-narrow-host-range-phages.html?...

Comment by Dr. Krishna Kumari Challa on January 18, 2022 at 10:56am

Are There Rainbows on Mars? 

Comment by Dr. Krishna Kumari Challa on January 18, 2022 at 10:50am

Nanotherapy offers new hope for the treatment of Type 1 diabetes

Individuals living with Type 1 diabetes must carefully follow prescribed insulin regimens every day, receiving injections of the hormone via syringe, insulin pump or some other device. And without viable long-term treatments, this course of treatment is a lifelong process.

Pancreatic islets control insulin production when blood sugar levels change, and in Type 1 diabetes, the body's  and destroys such insulin-producing cells. Islet transplantation has emerged over the past few decades as a potential cure for Type 1 diabetes. With healthy transplanted islets, Type 1 diabetes patients may no longer need insulin injections, but transplantation efforts have faced setbacks as the immune system continues to eventually reject new islets. Current immunosuppressive drugs offer inadequate protection for transplanted cells and tissues and are plagued by undesirable side effects.

Now a team of researchers at Northwestern University has discovered a technique to help make immunomodulation more effective. The method uses nanocarriers to re-engineer the commonly used immunosuppressant rapamycin. Using these rapamycin-loaded nanocarriers, the researchers generated a new form of immunosuppression capable of targeting specific cells related to the transplant without suppressing wider immune responses.

The concept of enhancing and controlling side effects of drugs via nanodelivery is not a new one. But  in this study researchers are not enhancing an effect, they are changing it—by repurposing the biochemical pathway of a drug, in this case mTOR inhibition by rapamycin, they are generating a totally different cellular response.

The team's discovery could have far-reaching implications. This approach can be applied to other transplanted tissues and organs, opening up new research areas and options for patients.

Guillermo Ameer, Subcutaneous nanotherapy repurposes the immunosuppressive mechanism of rapamycin to enhance allogeneic islet graft viability, Nature Nanotechnology (2022). DOI: 10.1038/s41565-021-01048-2www.nature.com/articles/s41565-021-01048-2

https://phys.org/news/2022-01-nanotherapy-treatment-diabetes.html?u...

Comment by Dr. Krishna Kumari Challa on January 18, 2022 at 9:52am

The researchers fed Rev-erbα/β knockout mice one of two . One diet was mostly high-fat. The other was a high-fat/high-sucrose diet, resembling human diets that promote obesity and insulin resistance. The high-fat/high-sucrose diet partially alleviated the cardiac defects, but the high-fat diet did not.

These findings support that the metabolic defect that prevents the heart cells from using fatty acids as fuel is causing the majority of the cardiac dysfunction we see in the Rev-erbα/β knockout mice. Importantly, we also show that correcting the metabolic defect can help improve the condition.

Chronotype Myocardial Rev-erb-mediated diurnal metabolic rhythm and obesity paradox, Circulation (2022). DOI: 10.1161/CIRCULATIONAHA.121.056076

https://medicalxpress.com/news/2022-01-circadian-clock-heart-failur...

Part2

Comment by Dr. Krishna Kumari Challa on January 18, 2022 at 9:51am

The circadian clock in heart failure

Disrupting circadian rhythms, which change naturally on a 24-hour cycle, has been implicated in heart disease, but it is unclear how it leads to the condition. A research team investigated the function of the protein Rev-erbα/β, a key component of the circadian clock, on heart disease development in animal models and human patients.

The team reports in the journal Circulation that Rev-erbα/β in cardiomyocytes mediates a normal metabolic rhythm that enables the cells to prefer lipids as a source of energy during the animal's resting time, daytime for mice. Removing Rev-erbα/β disrupts this rhythm, reduces the cardiomyocytes' ability to use lipids in the resting time and leads to progressive dilated cardiomyopathy and lethal heart failure.

They found that the Rev-erbα/β gene is highly expressed only during the sleep hours, and its activity is associated with fat and sugar metabolisms.

The heart responds differently to different sources of energy, depending on the time of the day. In the resting phase, which for humans is at night and for mice in the day, the heart uses fatty acids that are released from fats as the main source of energy. In the active phase, which is during the day for people and at night for mice, the heart has some resistance to dietary carbohydrates. The researchers found that without Rev-erbα/β, hearts have metabolic defects that limit the use of fatty acids when resting, and there is overuse of sugar in the active phase.

Scientists also found that when Rev-erbα/β knockout hearts cannot burn fatty acids efficiently in the resting phase, then they don't have enough energy to beat. That energy deficiency would probably lead to changes in the heart that resulted in progressive dilated cardiomyopathy.

To test this hypothesis, the researchers determined whether restoring the defect in fatty acid use would improve the condition.

Part 1

Comment by Dr. Krishna Kumari Challa on January 17, 2022 at 10:14am

How Salmonella overcomes host resistance

 The microbial species living in our gastrointestinal tract — the gut microbiota — help protect us against invading pathogens. One way they exert this “colonization resistance” is by producing antimicrobial products, such as the fatty acid propionate. The gut microbiota benefits the host by limiting enteric pathogen expansion (colonization resistance), partially via the production of inhibitory metabolites. Propionate, a short-chain fatty acid produced by microbiota members, is proposed to mediate colonization resistance against Salmonella enterica serovar Typhimurium (S. Tm).

Propionate is used in agricultural animals to limit infection by varieties of Salmonella bacteria, which cause food poisoning in humans.

Now, however, researchers have demonstrated that Salmonella can turn the tables and use propionate for its own purposes. The researchers showed in animal models that in the presence of inflammation, Salmonella changes its metabolism and uses propionate as a source of energy. They demonstrated that propionate metabolism supports expansion of Salmonella in the inflamed gut.

The findings, published in Cell Reports, show that in addition to promoting colonization resistance, propionate can fuel Salmonella growth, changing the understanding of propionate’s role and complicating its use as an antimicrobial treatment.

https://pubmed.ncbi.nlm.nih.gov/34986344/

https://researchnews.cc/news/11098/Salmonella-overcomes-host-resist...

Comment by Dr. Krishna Kumari Challa on January 17, 2022 at 9:58am

Tiger Shark Migrations Altered by Climate Change

 

Members (22)

 
 
 

© 2025   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service