Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 8 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 8 hours ago. 1 Reply 0 Likes
Q: Dr. Krishna, you tell us so many things about clinical research. But our doctors don't. Why is this? Why are doctors ignorant about some of the things you tell?Krishna: Research Data is there but…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Q: What has caused the shift in Indian youth from discussing topics like science and development to focusing on pseudoscience and nationalism?Krishna:Most people connect Nationalism to these ‘good’…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 12 Replies 0 Likes
Recently I have seen an old lady teasing an young girl who became breathless after climbing up a few steps. "Look I am 78. But still I can climb steps with ease. I can go anywhere I want without any…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Why do people get fevers when we get sick?It's a common misconception that pathogens, such as SARS-CoV-2 or the…Continue
Comment
The international Forward Search Experiment team has achieved the first-ever detection of neutrino candidates produced by the Large Hadron Collider at the CERN facility near Geneva, Switzerland.
In a paper published recently in the journal Physical Review D, the researchers describe how they observed six neutrino interactions during a pilot run of a compact emulsion detector installed at the LHC in 2018. This significant breakthrough is a step toward developing a deeper understanding of these elusive particles and the role they play in the universe.
Henso Abreu et al, First neutrino interaction candidates at the LHC, Physical Review D (2021). DOI: 10.1103/PhysRevD.104.L091101
https://phys.org/news/2021-11-physicists-neutrinos-large-hadron-col...
Microorganisms in our environment, such as soil dwelling bacteria, have evolved nonribosomal peptide synthetase enzymes (NRPS) that assemble building blocks called amino acids into peptide products which often have very potent antibiotic activity. Many of the most therapeutically important antibiotics, used in the clinic today, are derived from these NRPS enzymes (e.g. penicillin, vancomycin and daptomycin).
Unfortunately, deadly pathogens are emerging which are resistant to all of these existing antibiotic drugs. One solution could be to create new antibiotics with improved properties that can evade the resistance mechanisms of the pathogens. However, the nonribosomal peptide antibiotics are very complex structures which are difficult and expensive to produce by normal chemical methods. To address this, the research team use gene editing to engineer the NRPS enzymes, swapping domains that recognize different amino acid building blocks, leading to new assembly lines that can deliver new peptide products.
Researchers are now able to use gene editing to introduce targeted changes to complex NRPS enzymes, enabling alternative amino acids precursors to be incorporated into the peptide structures. They are optimistic that this new approach could lead to new ways of making improved antibiotics which are urgently needed to combat emerging drug-resistant pathogens.
Wei Li Thong et al, Gene editing enables rapid engineering of complex antibiotic assembly lines, Nature Communications (2021). DOI: 10.1038/s41467-021-27139-1
https://phys.org/news/2021-11-scientists-antibiotics-gene.html?utm_...
**
Scientists have discovered a new route to produce complex antibiotics exploiting gene editing to re-program pathways to future medicines urgently required to combat antimicrobial resistance, treat neglected diseases and tackle future pandemics.
Researchers from The University of Manchester have discovered a new way of manipulating key assembly line enzymes in bacteria which could pave the way for a new generation of antibiotic treatments.
New research published today in Nature Communications, describes how CRISPR-Cas9 gene editing can be used to create new nonribosomal peptide synthetase (NRPS) enzymes that deliver clinically important antibiotics. NRPS enzymes are prolific producers of natural antibiotics such as penicillin. However, up until now, manipulating these complex enzymes to produce new and more effective antibiotics has been a major challenge.
the gene editing process could be used to produce improved antibiotics and possibly lead to the development of new treatments helping in the fight against drug-resistant pathogens and illnesses in the future.
The emergence of antibiotic-resistant pathogens is one of the biggest threats we face today.
The gene editing approach the researchers developed now is a very efficient and rapid way to engineer complex assembly line enzymes that can produce new antibiotic structures with potentially improved properties.
Part 1
As for COVID-19 vaccines, the primary antigen used is the SARS-CoV-2 spike protein. According to Murphy and Longo, current research studies on antibody responses to these vaccines mainly focus on the initial protective responses and virus-neutralizing efficacy, rather than other long-term aspects.
"With the incredible impact of the pandemic and our reliance on vaccines as our primary weapon, there is an immense need for more basic science research to understand the complex immunological pathways at play. This need follows to what it takes to keep the protective responses going, as well as to the potential unwanted side effects of both the infection and the different SARS-CoV-2 vaccine types, especially as boosting is now applied. "The good news is that these are testable questions that can be partially addressed in the laboratory, and in fact, have been used with other viral models."
William J. Murphy et al, A Possible Role for Anti-idiotype Antibodies in SARS-CoV-2 Infection and Vaccination, New England Journal of Medicine (2021). DOI: 10.1056/NEJMcibr2113694
https://medicalxpress.com/news/2021-11-antibodies-mimicking-virus-h...
Part 3
**
Antibodies mimicking the virus
Drawing upon classic immunological concepts, Murphy and Longo suggest that the Network Hypothesis by Nobel Laureate Niels Jerne might offer insights.
Jerne's hypothesis details a means for the immune system to regulate antibodies. It describes a cascade in which the immune system initially launches protective antibody responses to an antigen (like a virus). These same protective antibodies later can trigger a new antibody response toward themselves, leading to their disappearance over time.
These secondary antibodies, called anti-idiotype antibodies, can bind to and deplete the initial protective antibody responses. They have the potential to mirror or act like the original antigen itself. This may result in adverse effects.
Coronavirus and the immune system
When SARS-CoV-2, the virus causing COVID-19, enters the body, its spike protein binds with the ACE2 receptor, gaining entry to the cell. The immune system responds by producing protective antibodies that bind to the invading virus, blocking or neutralizing its effects.
As a form of down-regulation, these protective antibodies can also cause immune responses with anti-idiotype antibodies. Over time, these anti-idiotype responses can clear the initial protective antibodies and potentially result in limited efficacy of antibody-based therapies.
"A fascinating aspect of the newly formed anti-idiotype antibodies is that some of their structures can be a mirror image of the original antigen and act like it in binding to the same receptors that the viral antigen binds. This binding can potentially lead to unwanted actions and pathology, particularly in the long term.
The authors suggest that the anti-idiotype antibodies can potentially target the same ACE2 receptors. In blocking or triggering these receptors, they could affect various normal ACE2 functions.
"Given the critical functions and wide distribution of ACE2 receptors on numerous cell types, it would be important to determine if these regulatory immune responses could be responsible for some of the off-target or long-lasting effects being reported. These responses may also explain why such long-term effects can occur long after the viral infection has passed.
Part 2
The COVID-19 pandemic has challenged scientists and those in the medical field. Researchers are working to find effective vaccines and therapies, as well as understand the long-term effects of the infection.
While the vaccines have been critical in pandemic control, researchers are still learning how and how well they work. This is especially true with the emergence of new viral variants and the rare vaccine side effects like allergic reactions, heart inflammation (myocarditis) and blood-clotting (thrombosis).
Critical questions about the infection itself also remain. Approximately one in four COVID-19 patients have lingering symptoms, even after recovering from the virus. These symptoms, known as "long COVID," and the vaccines' off-target side effects are thought to be due to a patient's immune response.
In an article published recently in The New England Journal of Medicine, scientists present a possible explanation to the diverse immune responses to the virus and the vaccines.
Part 1
Researchers have developed a jelly-like material that can withstand the equivalent of an elephant standing on it, and completely recover to its original shape, even though it’s 80% water.
The soft-yet-strong material, developed by a team at the University of Cambridge, looks and feels like a squishy jelly, but acts like an ultra-hard, shatterproof glass when compressed, despite its high water content.
The non-water portion of the material is a network of polymers held together by reversible on/off interactions that control the material’s mechanical properties. This is the first time that such significant resistance to compression has been incorporated into a soft material.
The ‘super jelly’ could be used for a wide range of potential applications, including soft robotics, bioelectronics or even as a cartilage replacement for biomedical use. The results are reported in the journal Nature Materials.
https://www.nature.com/articles/s41563-021-01124-x
Tracing down why these alternate genetic codes emerged during evolutionary history is difficult, multiple researchers tell The Scientist, in no small part because humans couldn’t watch it happen. But the authors do have some hypotheses.
a bacterium that uses the same alternate code as a bacteriophage virus that infects it, indicating that the bacteria seemingly evolved an alternate code that prevented its cellular machinery from being hijacked—and that the phage may have then made the same adaptation to follow its host.
https://www.the-scientist.com/news-opinion/screen-of-250-000-specie...
he genetic code that dictates how genetic information is translated into specific proteins is less rigid than scientists have long assumed, according to research published today (November 9) in eLife. In the paper, scientists report screening the genomes of more than 250,000 species of bacteria and archaea and finding five organisms that rely on an alternate genetic code, signifying branches in evolutionary history that haven’t been fully explained.
The genetic code refers to how sequences of DNA nucleotide bases lead to specific chains of amino acids during the process of protein synthesis. To perform this synthesis, ribosomes read strands of mRNA—copies of bits of the organism’s genome—in chunks of three bases at a time. Each three-base sequence, known as a codon, binds to a specific transfer RNA (tRNA) that ferries a corresponding amino acid to the ribosome to the added to the protein chain. An organism with an alternate genetic code, like the five new instances that the study authors found, has codons that correspond to different amino acids than they would in the standard genetic code employed by the vast majority of known life forms.
The genetic code has been set in stone for 3 billion years. The fact that some organisms have found a way to change it is really fascinating . Changing the genetic code requires changing ancient, important molecules like tRNAs that are so fundamental to how biology works.
As such, the code was thought to be largely preserved across all forms of life, with scientists finding the occasional exception during the past several decades of research. In addition to finding five new alternate genetic codes, the team also verified seven others that had been discovered one-by-one in the past, bringing the total number of known exceptions in bacteria to 12.
Part of the reason changes do happen is that some bacterial genomes may have a low composition of certain nucleotides compared to others. That brings the usage of codons that rely on those nucleotides down to nearly zero, making it easier for an organism to survive shifts without altering too many proteins in a drastic way.
Part 1
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!