Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 2 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 4 hours ago. 13 Replies 0 Likes
Headlines in the media screaming: Humans dump 8 million tonnes of plastics into the oceans each year. That's five grocery bags of plastic for every foot of coastline in the world.Plastic, plastic,…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
For years, scientists have believed that inflammation inevitably increases with age, quietly fueling diseases like …Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Is plagiarism really plagiarism? When plagiarism is not really plagiarism!Now read this report of a research paper I came across.... Massive study detects AI fingerprints in millions of scientific…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Saturday. 1 Reply 0 Likes
Q: Is it a fact that cancer is also genetically inherited? If so, how much percentage of cancer affected patients have genetically inherited cancer? K: While most cancers are not directly inherited,…Continue
Comment
The microneedles themselves are made of a non-degradable, biocompatible hydrogel that also contains zwitterionic poly-sulfobetaine (poly-SPB). As reported in previous studies by the same authors, this polymer suppresses protein aggregation. Thus, the researchers incorporated it during the fabrication process and showed that the proteins pre-loaded in the microneedles were stable even when subjected to various external stresses.
Additionally, the scientists developed a straightforward and cost-effective way to fabricate microneedle arrays made from the abovementioned materials. They resorted to photolithography, a process in which a photomask is used to selectively block UV light from reaching a target surface to control chemical reactions locally.
To test the performance of these microneedle arrays for drug delivery, the researchers loaded them with 50 microliters of drug solutions containing rhodamine B as a dye alongside lysozyme and insulin as example proteins. Through various experiments on porcine skin, the teams verified that their microneedle patches offered both high drug-loading capacity and high drug-release rate. Moreover, they confirmed that the microneedles could both load and preserve various water-soluble drugs and proteins simultaneously, eliminating the need for refrigeration.
Overall, the proposed microneedle arrays seem to be a remarkably promising platform for administering therapeutic drugs and vaccines.
Harit Pitakjakpipop et al, Facile Photolithographic Fabrication of Zwitterionic Polymer Microneedles with Protein Aggregation Inhibition for Transdermal Drug Delivery, Biomacromolecules (2021). DOI: 10.1021/acs.biomac.1c01325
https://medicalxpress.com/news/2021-12-rethinking-drugs-breakthroug...
Part 2
**
The painful feeling of receiving an injection through a hypodermic needle or with the unpleasant sensation of swallowing a large pill is a globally familiar sensation. But what if a revolutionary and gentler way of administering drugs was in the works? For over two decades, researchers have been investigating various types of microneedles as a minimally invasive method for transdermal drug delivery. Arrays of microneedles can be designed to be loaded with a drug or chemical, which they then release over time onto the blood stream after piercing slightly beyond the skin layers.
Microneedles offer several advantages compared to other types of drug delivery. First, they are painless and cause virtually no damage to the skin nor bleeding. Second, they can be self-administered. Third, unlike traditional needles, the disposal of microneedles is much easier as they don't leave behind hazardous waste. Unfortunately, there are still a few challenges that need to be addressed before microneedles become the next big thing in healthcare. One is their fabrication cost, which generally involves expensive molds, materials, and machinery. Another issue is the aggregation and degradation of proteins when microneedles are pre-loaded with a protein-based medicine, as these molecules are quite sensitive to external conditions such as temperature, acidity and salt concentration.
In a recent study published in Biomacromolecules, two research teams from Japan and Thailand collaborated to address the main limitations of existing microneedles.
One team developed and applied a functional polymer that effectively suppresses protein aggregation. The other team perfected a microneedle fabrication method suitable for the industrial scale based on photolithography. By combining these two efforts, the teams managed to produce microneedles patches with several attractive properties and potential scalability to clinical settings.
Part 1
Heavy metals have a reputation for being dangerous, but some are essential nutrients that you can't live without.
Mountain spring water isn't as clean as you think it is
Mountain spring water is often touted as the cleanest water you can drink. But a new study revealed this isn't the case.
Using data collected over 40 years, researchers detailed how water quality in high-elevation streams has been negatively affected by a combination of historical events and modern changes, namely sediment from rural roads and agricultural runoff.
Unpaved roads are just one of several factors contributing to sediment runoff.
When streams carry a lot of sediment, it makes it more difficult for animals to see food in the water, and it affects fish growth and disease resistance. Sediment also continues to flow downstream and into public water supplies, where it costs cities and towns more to filter.
The landscape you see now isn't what it was like in 1900. For generations, people farmed the valleys and left the hillsides forested, for hunting and gathering. But the new settlers cut the forests and even tried to farm the hills, causing erosion and sediment to move into the streams. Today, stream beds continue to show evidence of sediment deposited more than a century ago, even as new sediment pushes through the waters.
Many years later, a new kind of development in the region created a different kind of land disturbance. For generations, residents considered the steep mountain slopes undevelopable. But the 1980s and '90s brought a desire for mountain getaway homes with views.
By building homes on mountain ridges, he said, it created more land disturbance through carving out unpaved roads and cutting into hillsides, sometimes creating landslides.
"Roadside ditches and unpaved roads produce a lot of sediment, and their sediment production increases as roads get steeper and as gravel roads get more use. in areas with both mountain and valley development, the researchers found sediment concentrations four to six times higher.
Farming also takes its toll. The studies researchers analyzed found many streams in the area to have high nutrient concentrations—particularly nitrate. When a stream flowing through a pasture loses its buffer of trees, it loses a natural protection against nutrient runoff.
Streams without shade also have higher water temperatures.
The paper was published earlier this month in the journal Bioscience.
C Rhett Jackson et al, Distinctive Connectivities of Near-Stream and Watershed-Wide Land Uses Differentially Degrade Rural Aquatic Ecosystems, BioScience (2021). DOI: 10.1093/biosci/biab098
https://researchnews.cc/news/10775/Mountain-spring-water-isn-t-as-c...
**
The telescope is on a 30-day long journey to cover the 15,00,000 kilometers distance between Earth and its intended orbit. It will reach the location by the end of January.
Source: https://www.indiatoday.in/science/story/where-is-james-webb-telesco...
Part 4
**
Part 3
This location lets the telescope stay in line with the Earth as it moves around the Sun allowing its large sunshield to protect the telescope from the light and heat of the Sun and Earth (and Moon). The position is named in honour of Italian-French mathematician Josephy-Louis Lagrange.
There are five special points where a small satellite can orbit in a constant portion with two big masses. At these five positions part of the Earth-Sun system, three (L1, L2 and L3) lie along the line connecting the two large masses. Meanwhile, L4 and L5 form the apex.
According to Nasa, the L1 point of the Earth-Sun system affords an uninterrupted view of the sun and is currently home to the Solar and Heliospheric Observatory Satellite SOHO. The L2, where the James Webb Space Telescope is going, is ideal for astronomy because a spacecraft is close enough to readily communicate with Earth, can keep Sun, Earth and Moon behind the spacecraft for solar power and (with appropriate shielding) provides a clear view of deep space.
It is to be noted that L1 and L2 points are unstable and satellites functioning from this location need to go through regular course corrections. Meanwhile, L3 remains behind the Sun and is unlikely to be used.
The location was chosen since James Webb will be observing the universe in infrared vision which can sometimes be fe... and since it is looking for the faintest signals, it needs to be safeguarded from any bright, hot sources, the biggest being our Sun.
The telescope itself will be operating at about -225 degrees Celsius and the temperature difference between the front and back of the spacecraft will be huge. To protect the telescope, the location needs to be such that light and heat from the Sun, Moon and Earth needs to come from just one direction. The second lagrange point is the optimum location from where Sun, Moon and Earth are in the one-line direction.
Part 2
Travelling at 1.39 kilometers per second in the vacuum of space, the James Webb Space Telescope (JWST) is headed to a destination that humans will never see it again — 15,00,000 kilometers away from Earth. A day after it soared into skies following a nerve-wracking launch, the telescope has covered nearly 23 per cent of its journey to the location known as the second Lagrange point.
The telescope on Sunday released its gimbaled antenna assembly, which includes its high-data-rate dish antenna. The antenna will be used to send at least 28.6 gigabytes of science data down from the observatory, twice a day.
The world’s largest and most complex space science observatory will now begin six months of commissioning in space. At the end of commissioning, Webb will deliver its first images. Webb will study infrared light from celestial objects with much greater clarity than ever before.
Unlike the Hubble space telescope, the James Webb telescope will not orbit the Earth, it is headed to a location known as the second Lagrange point from where it will observe the universe, so far back into time that it will see the origin of the universe following the big bang itself.
According to Nasa, Lagrange points are positions in space where objects sent tend to stay put. At Lagrange points, the gravitational pull of two large masses precisely equals the centripetal force required for a small object to move with them. These points in space can be used by spacecraft to reduce the fuel consumption needed to remain in position.
Part 1
Early in the pandemic, researchers observed high levels of inflammatory cytokines—molecules which adjust or alter the immune system response—in COVID patients with poor outcomes. However, this so called 'cytokine storm' was also present in hospitalized patients with a milder version of the disease. We set out to fine tune our knowledge of which factors in the blood correlate with severe disease with more insight and accuracy.
These findings provide a scientific foundation for the development of blood tests that could provide doctors with vital information on which treatments will be most effective for a patient.
Julie C. Wilson et al, Integrated miRNA/cytokine/chemokine profiling reveals severity-associated step changes and principal correlates of fatality in COVID-19, iScience (2021). DOI: 10.1016/j.isci.2021.103672
https://medicalxpress.com/news/2021-12-blood-factors-linked-severe-...
Part 2
**
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!