Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 17 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 3 Replies 0 Likes
Q: Dr.Krishna, I have read your article on Nocebo Effect. But what…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Q: Why do many scientists dismiss ancient Indian knowledge without examination? Does this stem from ego, cultural bias, or fear of inner truth?Krishna: I object to the words “without examination”. No…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa May 15. 1 Reply 0 Likes
Q: What are kinetic and non kinetic responses during warfare?Krishna: I think people are asking these questions because these things caught their imagination as these words were used during media…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa May 15. 1 Reply 0 Likes
Q: I read in some news reports that Pakistan imported Boron from Egypt after India's attack on its military installations? Some are speculating that its nuclear storage sites were hit. In what way…Continue
Comment
Researchers have discovered that reversing the modification of molecular messages at synapses in the human brain, may contribute to reversible mental health conditions such as anxiety, and memory diseases such as dementia.
The findings are a major step in our understanding how brain cells communicate, and could help to identify new treatments for neurological and psychiatric conditions.
Nerve cells in the human brain talk to one another at sites called synapses, where molecules are released to signal to the next cell. When people learn or remember things, this signaling is strengthened. When communication between synapses goes wrong, circuits become broken. As more circuits are lost, this changes how people can think and perform everyday tasks. This is seen in cognitive disorders, such as forms of dementia and some mental health conditions.
The function of nerve cells and synapses depends on proteins that are made using information encoded in genetic material called RNA. It is thought that RNAs are located exactly where and when they are needed for synaptic signaling because some kind of synaptic 'tag' labels the correct active synapse. Scientists have recently learnt that RNA can have a methyl group/molecule added to one of the RNA bases which 'marks' the RNA message. Such adding of methyl groups can influence proteins binding to DNA or RNA and consequently stop proteins being produced.
This new study shows that RNA marking can be reversed at synapses and hence may act as a 'synaptic tag'. The findings suggest, that if disrupted, this could cause synapses and nerve cells to malfunction by influencing the formation of toxic protein clumps.
The researchers used advanced microscopy to examine changes in marked RNAs in time and location at synapses, and a sequencing technique to characterize 'marked' RNAs in brain tissue from the hippocampus, a region of the brain very important for memory formation.
are able to gain a new understanding of the genomic mechanisms which regulate how nerve cells communicate at synapses. These genomic mechanisms involve methyl groups being put on RNA messages and importantly taken off when a synapse is active. The implications are very important for normal brain function but also for reversible psychiatric mental conditions such as anxiety and addiction disorders and early-stage neurodegenerative diseases such as dementias.
Braulio Martinez De La Cruz et al, Modifying the m6A brain methylome by ALKBH5-mediated demethylation: a new contender for synaptic tagging, Molecular Psychiatry (2021). DOI: 10.1038/s41380-021-01282-z
https://medicalxpress.com/news/2021-10-scientists-gain-brain-cells....
Researchers came up with a plan for settling the debate once and for all.
The international team of researchers then placed their bet that paleomagnetic data from limestones created in the Cretaceous (between ~145.5 and 65.5 million years ago) located in Italy would provide a definitive test. The magnetism of the younger rocks in the same area was studied nearly 50 years ago, and indirectly led to the discovery of the asteroid impact that killed the dinosaurs. These Italian sedimentary rocks turn out to be special and very reliable because the magnetic minerals are actually fossils of bacteria that formed chains of the mineral magnetite.
To test their hypothesis about true polar wander, paleomagnetic data with lots of redundancy are required to track the wander of the ancient location of Earth's spin axis. Prior studies, especially some claiming that true polar wander does not occur, have failed to explore enough data points according to the team.
That is one reason why it is so refreshing to see this study with its abundant and beautiful paleomagnetic data.
As the true polar wander hypothesis predicted, the Italian data indicate an ~12˚ tilt of the planet 84 million years ago. The team also found that Earth appears to have corrected itself—after tipping on its side, Earth reversed course and rotated right back, for a total excursion of nearly 25˚ of arc in about five million years. Certainly, this was a cosmic "yo-yo.
Ross N. Mitchell et al, A Late Cretaceous true polar wander oscillation, Nature Communications (2021). DOI: 10.1038/s41467-021-23803-8
https://phys.org/news/2021-10-earth-side-million-years.html?utm_sou...
Part 2
**
scientists have found more evidence that Earth tips over from time to time. We know that the continents are moving slowly due to plate tectonics, but continental drift only pushes the tectonic plates past each other. It has been debated for the past few decades whether the outer, solid shell of the Earth can wobble about, or even tip over relative to the spin axis. Such a shift of Earth is called "true polar wander," but the evidence for this process has been contentious. New research published in Nature Communications, led by the Earth-Life Science Institute (ELSI) and Institute of Geology and Geophysics in Beijing, provides some of the most convincing evidence to date that such planetary tipping has indeed occurred in Earth's past.
True polar wander bears some dissecting. The Earth is a stratified ball, with a solid metal inner core, a liquid metal outer core, and a solid mantle and overriding crust at the surface which we live on. All of this is spinning like a top, once per day. Because the Earth's outer core is liquid, the solid mantle and crust are able to slide around on top of it. Relatively dense structures, such as subducting oceanic plates and massive volcanoes like Hawaii, prefer to be near the Equator, in the same way that your arms like to be out to your side when you are spinning around in an office chair.
Despite this wandering of the crust, Earth' magnetic field is generated by electrical currents in the convecting liquid Ni-Fe metal of the outer core. On long time scales, the overlying wander of the mantle and crust does not affect the core, because those overlying rock layers are transparent to Earth's magnetic field. In contrast, the convection patterns in this outer core are actually forced to dance around Earth's rotation axis, which means that the overall pattern of Earth's magnetic field is predictable, spreading out in the same fashion as iron filings lining up over a small bar magnet. Hence, these data provide excellent information about the direction of the North and South geographic poles, and the tilt gives the distance from the poles (a vertical field means you are at the pole, horizontal tells us it was on the Equator). Many rocks actually record the direction of the local magnetic field as they form, in much the same way that a magnetic tape records your music. For example, tiny crystals of the mineral magnetite produced by some bacteria actually line up like tiny compass needles, and get trapped in the sediments when the rock solidifies. This "fossil" magnetism can be used to track where the spin axis is wandering relative to the crust.
Imagine looking at Earth from space. True polar wander would look like the Earth tipping on its side, and what's actually happening is that the whole rocky shell of the planet—the solid mantle and crust—is rotating around the liquid outer core. Although scientists can measure true polar wander occurring today very precisely with satellites, geologists still debate whether large rotations of the mantle and crust have occurred in Earth's past.
part 1
Researchers came up with a plan for settling the debate once and for all.
Nearly half of our DNA has been written off as junk, the discards of evolution: Sidelined or broken genes, viruses that got stuck in our genome and were dismembered or silenced, none of it relevant to the human organism or human evolution.
But research over the last decade has shown that some of this genetic "dark matter" does have a function, primarily in regulating the expression of host genes—a mere 2% of our total genome—that code for proteins. Biologists continue to find whether these regulatory sequences of DNA play essential or detrimental roles in the body or are merely incidental, an accident that the organism can live without.
A new study explored the function of one component of this junk DNA, transposons, which are selfish DNA sequences able to invade their host genome. The study shows that at least one family of transposons—ancient viruses that have invaded our genome by the millions—plays a critical role in viability in the mouse, and perhaps in all mammals. When the researchers knocked out a specific transposon in mice, half their mouse pups died before birth.
This is the first example of a piece of "junk DNA" being critical to survival in mammals.
In mice, this transposon regulates the proliferation of cells in the early fertilized embryo and the timing of implantation in the mother's uterus. The researchers looked in seven other mammalian species, including humans, and also found virus-derived regulatory elements linked to cell proliferation and timing of embryo implantation, suggesting that ancient viral DNA has been domesticated independently to play a crucial role in early embryonic development in all mammals.
Andrew J. Modzelewski et al, A mouse-specific retrotransposon drives a conserved Cdk2ap1 isoform essential for development, Cell (2021). DOI: 10.1016/j.cell.2021.09.021
https://phys.org/news/2021-10-so-called-junk-dna-critical-role.html...
It's not tough.
4*4+4*4+4–4*4
=16+16+4–16 ( according to BODMAS)
=20
--
(4x4)+(4x4)+4-(4x4)
16+26+4–16=20
--
(4 x 4) + (4 x 4) + 4 -(4 x 4) =
(16) + (16) + 4 - (16) =
36 - 16 = 20.
--
20 is the answer according to BODMAS
Hint: Use BODMAS Rule.
B - Brackets
O - Of
D - Division
M - Multiplication
A - Addition
S - Subtraction
You need to do the calculations in this order, B to S.
Did you know that every one of us has a brain "fingerprint" and that this fingerprint changes over time?
From overflowing landfills to floating garbage islands in the oceans to microplastics in remote wilderness areas, billions of tons of discarded plastic have created a global pollution crisis.
Sunscreen that includes zinc oxide, a common ingredient, loses much of its effectiveness and becomes toxic after two hours of exposure to ultraviolet radiation, according to a study by scientists.
The toxicity analysis involved zebrafish, which share a remarkable similarity to humans at the molecular, genetic and cellular levels, meaning many zebrafish studies are immediately relevant to people.
Findings were published recently in Photochemical & Photobiological Sciences.
Sunscreens are important consumer products that help to reduce UV exposures and thus skin cancer, but we do not know if the use of some sunscreen formulations may have unintended toxicity because of interactions between some ingredients and UV light.
And sunscreens containing inorganic compounds like zinc oxide or titanium dioxide, that block UV rays, are being marketed more and more heavily as safe alternatives to the organic small-molecule compounds that absorb the rays.
In the experiments conducted now, zinc oxide degraded the organic mixture and caused a greater than 80% loss in organic filter protection against ultraviolet-A rays, which make up 95% of the UV radiation that reaches the Earth. Also, the zinc-oxide-induced photodegradation products caused significant increases in defects to the zebrafish we used to test toxicity. That suggests zinc oxide particles are leading to degradants whose introduction to aquatic ecosystems is environmentally hazardous.
Aurora L. Ginzburg et al, Zinc oxide-induced changes to sunscreen ingredient efficacy and toxicity under UV irradiation, Photochemical & Photobiological Sciences (2021). DOI: 10.1007/s43630-021-00101-2
https://phys.org/news/2021-10-hours-sunscreen-zinc-oxide-effectiven...
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!