Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 16 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 16 hours ago. 3 Replies 0 Likes
Interactive science seriesQ: What are the disadvantages of doing DIRECT Ph.D.? Krishna: If you have the confidence to do a direct…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 18 hours ago. 1 Reply 0 Likes
Have you ever gone to the optometrist for an eye test and were told your eye was shaped like a football?Or perhaps you've noticed your vision is becoming increasingly blurry or hard to focus?You…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Blindness, pneumonia, severe diarrhea and even death—measles virus infections, especially in children, can have devastating consequences. Fortunately, we have a safe and effective defense. Measles…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 19 Replies 2 Likes
What might happen when you take lots of medicines...One of our uncles died of liver cirrhosis ten years back. He never touched alcohol in his life. He didn't have any viral infection to cause this.…Continue
Comment
Moreover, in real neural networks, connectivity is not static—it evolves over time, influenced by both external stimuli and internal network activity. This dynamic nature of connectivity might play a crucial role in shaping how neural populations process and encode information, potentially offering insights into how learning and adaptive properties affect information encoding in neural systems.
Giacomo Barzon et al, Excitation-Inhibition Balance Controls Information Encoding in Neural Populations, Physical Review Letters (2025). DOI: 10.1103/PhysRevLett.134.068403.
Part 2
The brain's ability to process information is known to be supported by intricate connections between different neuron populations. A key objective of neuroscience research has been to delineate the processes via which these connections influence information processing.
Researchers recently carried out a study aimed at better understanding the contribution of excitatory and inhibitory neuron populations to the brain's encoding of information. Their findings, published in Physical Review Letters, show that information processing is maximized when the activity of excitatory and inhibitory neurons is balanced.
The brain continuously receives and integrates sensory inputs, and neurons do not act in isolation—they are part of complex, recurrent networks. One particularly intriguing feature of these networks is the balance between the activity of excitatory and inhibitory neurons, which has been observed across different brain regions.
Researchers wanted to determine whether the balance between excitatory and inhibitory neurons does more than stabilize neural activity. Specifically, the team explored the possibility that this balance also optimizes information processing.
They analyzed a model that captures the interactions between these two populations and investigated—both analytically and numerically—their response to external signals.
Specifically, by employing tools of information theory, they revealed a fundamental trade-off: neural networks optimized for accurate encoding over long timescales may be less responsive to rapid changes in the input.
Employing mathematical and theoretical approaches for studying information processing, the researchers showed that information processing is most effective at the edge of stability, a critical state in which the activity of excitatory and inhibitory neurons is balanced. Their results suggest that the fine-tuning of this excitation-inhibition balance could not only stabilize the brain's activity, but could also play a crucial role in its ability to optimally encode information.
Part 1
Within a few weeks of implantation, the BCC model helped the animals regain normal erectile function both spontaneously and in response to electrical stimulation, allowing them to mate and reproduce successfully.
These results open exciting possibilities for treating penile tissue damage and even making penis transplants a reality using the 3D-printed BCC model. The researchers also think that the findings of this study will support the further development of 3D-printed blood-vessel-rich functional organs for transplantation.
Zhenxing Wang et al, 3D-printed perfused models of the penis for the study of penile physiology and for restoring erectile function in rabbits and pigs, Nature Biomedical Engineering (2025). DOI: 10.1038/s41551-025-01367-y
Part 2
Erectile dysfunction affects over 40% of men over 40, yet our understanding of the condition remains limited. Research on this issue has mostly relied on real organs, making it difficult to study the detailed interaction between blood flow and tissue during an erection.
In a recent study published in Nature Biomedical Engineering, a team of scientists from China, Japan and the U.S. presented a 3D printed hydrogel-based penile model complete with essential blood vessels to mimic the natural function of a penis.
Once implanted into rabbits and pigs with penile deformities, the bioengineered organ enabled them to mate and reproduce within weeks.
Apart from transporting oxygen and essential nutrients throughout the body, the vascular system also plays a crucial role in penile erection. This is especially true of the corpora cavernosa with its numerous cavernous spaces, with the cavernous artery running through the center of the penis.
During an erection, these spaces get filled with blood and press against nearby veins that block the blood from flowing out, causing the penis to swell and stay firm. Damage to this intricate system of vessels can lead to erectile dysfunction (difficulty achieving an erection) and Peyronie's disease (penile curvature and deformation).
Scientists created a detailed penile system which included the glans (tip of the penis), corpus spongiosum (the tissue surrounding the urethra) with urethral structures and an implantable model of the corpus cavernosum, the sponge-like vascular tissue responsible for erections. This biomimetic corpus cavernosum (BCC) model helped them visualize how different structures and fluids interact during both normal and dysfunctional erections.
The study also explored repairing penile tissue damage in rabbits and pigs. The process began with introducing endothelial cells (lining of blood vessels) derived from the corpus cavernosum of said animals in the BCC model. After 14 days of in-vitro culture, the implantable 3D-printed organ was ready with a fused endothelial layer.
Part 1
A 2016 report for the European Commission found the majority of inks used in tattooing are not even approved for use in cosmetics, and some are known to be carcinogenic during degradation.
If you are considering getting inked, it is worth carefully considering ink types and checking if you are clear of other health conditions, such as psoriasis, that tattooing may exacerbate.
Research like this can be a powerful tool to inform us of potential risks
https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-0...
Part 2
A twin study suggests the consequences of getting a tattoo could be worse than potential regret, finding tattooed twins more likely to develop skin cancer or lymphoma than their tattoo-free siblings.
A cohort study of 2,367 randomly selected twins compared individuals who had a form of skin cancer with those who didn't, revealing those who had tattoos had nearly four times the risk of skin cancer.
Their case-control study compared 316 individuals with their twin siblings, finding between 33 and 62 percent greater risk of a tattooed twin going on to develop cancer.
This was more pronounced for those with tattoos larger than their palm – a risk three times higher than those without tattoos.
It's important to note, firstly, that cancers like lymphoma are quite rare, so this increase is from a low baseline.
What's more, this is not evidence that tattoos cause cancer. It may be those who get tattoos are more at risk of cancer thanks to factors related to a decision to get tattoos.
But previous research has also found higher risks of lymphoma in people with tattoos than in those without, so these findings call for further investigation.
Other studies showed that ink can contain potentially harmful substances, and for example, red ink more often causes allergic reactions. This is an area we would like to explore further.
Ink particles accumulate in the lymph nodes, and scientists suspect that the body perceives them as foreign substances.
This may mean that the immune system is constantly trying to respond to the ink, and we do not yet know whether this persistent strain could weaken the function of the lymph nodes or have other health consequences.
Part 1
A new study has uncovered how the brain seamlessly transforms sounds, speech patterns, and words into the flow of everyday conversations. Using advanced technology to analyze over 100 hours of brain activity during real-life discussions, researchers revealed the intricate pathways that allow us to effortlessly speak and understand.
These insights not only deepen our understanding of human connection but also pave the way for transformative advancements in speech technology and communication tools.
The study, published in Nature Human Behaviour, recorded brain activity over 100 hours of natural, open-ended conversations using a technique called electrocorticography (ECoG).
To analyze this data, researchers used a speech-to-text model called Whisper, which helps break down language into three levels: simple sounds, speech patterns, and the meaning of words. These layers were then compared to brain activity using advanced computer models.
The results showed that the framework could predict brain activity with great accuracy. Even when applied to conversations that were not part of the original data, the model correctly matched different parts of the brain to specific language functions. For example, regions involved in hearing and speaking aligned with sound and speech patterns, while areas involved in higher-level understanding aligned with the meanings of words.
The study also found that the brain processes language in a sequence. Before we speak, our brain moves from thinking about words to forming sounds, while after we listen, it works backwards to make sense of what was said.
This research has potential practical applications, from improving speech recognition technology to developing better tools for people with communication challenges. It also offers new insights into how the brain makes conversation feel so effortless, whether it's chatting with a friend or engaging in a debate.
A unified acoustic-to-speech-to-language embedding space captures the neural basis of natural language processing in everyday conversations, Nature Human Behaviour (2025). DOI: 10.1038/s41562-025-02105-9
In a recently published review, researchers explored the ongoing process of neural cell competition (NCC), a fundamental mechanism that shapes the brain across the lifespan.
The review is published in National Science Review, and provides fresh insights into how brain cells continuously "compete" for survival and how this competition impacts brain development, wiring, function, and aging.
Although neural cell competition is widely recognized for its role during early brain development, the new work demonstrated that this process continues to be vital throughout life. The researchers revealed that NCC not only helps maintain healthy brain function but also contributes to age-related cognitive decline when disrupted.
The researchers discussed how NCC regulates the balance between different types of brain cells, such as neural progenitors, neurons, and glial cells, ensuring the proper structure and function of neural networks. As we age, this balance can become skewed, potentially leading to cognitive decline and diseases such as Alzheimer's Disease. Disruptions in cellular competition, such as neuronal loss or excessive glial cell growth, have been linked to neurodegenerative diseases.
Additionally, they highlighted how NCC extends beyond neurons, affecting other brain cell types. For example, in the aging brain, oligodendrocyte precursor cells compete to mature into oligodendrocytes. Dysregulation of this process can impair the brain's ability to process information efficiently, contributing to conditions like multiple sclerosis and other white matter diseases.
By understanding NCC's influence across various cell types, the research opens the door to potential strategies for protecting brain cells and slowing the aging process.
One of the most exciting prospects from this research is the possibility of targeting NCC in future therapies to promote brain health in older adults. The review suggests that manipulating the signaling pathways involved in NCC could help protect neurons, enhance cognitive function, and even combat age-related neurodegenerative diseases. This review highlights the dynamic and ongoing battle that occurs inside our brains every day, one that involves complex interactions between different cell types that impact everything from our ability to learn as children to how we remember things as adults. It's a critical step forward in understanding how we can better protect our brains as we age.
Yu Zheng Li et al, Neural Cell Competition Sculpting Brain from Cradle to Grave, National Science Review (2025). DOI: 10.1093/nsr/nwaf057
High temperatures could affect brain function in preadolescents
Exposure to high ambient temperatures is associated with lower connectivity in three brain networks in preadolescents, suggesting that heat may impact brain function. This is the conclusion of a study whose results have been published in the Journal of the American Academy of Child & Adolescent Psychiatry.
Higher ambient temperatures during the week preceding the MRI assessment were associated with lower functional connectivity within the medial parietal, salience, and hippocampal networks, which are essential for proper brain functioning.
This implies that brain areas may work less synchronously, affecting processes such as attention, memory, and decision-making. The medial parietal network is related to introspection and self-perception; the salience network detects environmental stimuli and prioritizes what deserves our attention; and the hippocampal network is critical for memory and learning.
The research shows that the association between high temperatures and lower functional connectivity was strongest on the day before the brain scan and progressively decreased on subsequent days. In contrast, low average daily temperatures were not associated with functional connectivity.
Researchers hypothesized that dehydration could explain their findings, as children are particularly vulnerable to fluid loss when exposed to heat, which can affect the functional connectivity of brain networks.
In the current climate emergency, public health policies aimed at protecting children and adolescents from high temperatures could help mitigate potential effects on brain function, say the researchers.
The same research team found that exposure to cold and heat can affect psychiatric symptoms such as anxiety, depression and attention problems. In addition, other studies have linked lower connectivity within the brain's salience network to suicidal ideation and self-harming behaviors in adolescents with depression, as well as to anxiety disorders.
A new hypothesis: high temperatures could decrease the functional connectivity of brain network, indirectly contributing to a higher risk of suicide in individuals with pre-existing mental health conditions.
The researchers, however, do not propose that these connectivity changes, triggered by heat exposure, directly induce suicidal behaviors, they could act as a trigger in vulnerable individuals.
Laura Granés et al, Exposure to Ambient Temperature and Functional Connectivity of Brain Resting-State Networks in Preadolescents, Journal of the American Academy of Child & Adolescent Psychiatry (2025). DOI: 10.1016/j.jaac.2024.11.023
Just a few days of eating a diet high in saturated fat could be enough to cause memory problems and related brain inflammation in older adults, a new study in rats suggests.
Researchers fed separate groups of young and old rats the high-fat diet for three days or for three months to compare how quickly changes happen in the brain versus the rest of the body when eating an unhealthy diet.
As expected based on previous diabetes and obesity research, eating fatty foods for three months led to metabolic problems, gut inflammation and dramatic shifts in gut bacteria in all rats compared to those that ate normal chow, while just three days of high fat caused no major metabolic or gut changes.
When it came to changes in the brain, however, researchers found that only older rats—whether they were on the high-fat diet for three months or only three days—performed poorly on memory tests and showed negative inflammatory changes in the brain.
The results dispel the idea that diet-related inflammation in the aging brain is driven by obesity. Unhealthy diets and obesity are linked, but they are not inseparable.
The researchers now showed that within three days, long before obesity sets in, tremendous neuroinflammatory shifts are occurring.
Changes in the body in all animals are happening more slowly and aren't actually necessary to cause the memory impairments and changes in the brain. We never would have known that brain inflammation is the primary cause of high-fat diet-induced memory impairments without comparing the two timelines.
The research was published recently in the journal Immunity & Ageing.
Michael J. Butler et al, Obesity-associated memory impairment and neuroinflammation precede widespread peripheral perturbations in aged rats, Immunity & Ageing (2025). DOI: 10.1186/s12979-024-00496-3
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!