Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 9 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 3 Replies 0 Likes
Q: Dr.Krishna, I have read your article on Nocebo Effect. But what…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Q: Why do many scientists dismiss ancient Indian knowledge without examination? Does this stem from ego, cultural bias, or fear of inner truth?Krishna: I object to the words “without examination”. No…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa May 15. 1 Reply 0 Likes
Q: What are kinetic and non kinetic responses during warfare?Krishna: I think people are asking these questions because these things caught their imagination as these words were used during media…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa May 15. 1 Reply 0 Likes
Q: I read in some news reports that Pakistan imported Boron from Egypt after India's attack on its military installations? Some are speculating that its nuclear storage sites were hit. In what way…Continue
Comment
The thin line between science and pseudo-science
When lithium ions are forced rapidly through a battery, they might get stuck and turn into lithium metal, no longer able to move through the battery.
Fast charging is kind of the Holy Grail. It is what everyone who owns a lithium ion battery based device wants to be able to do.
Inside the battery, however, there is a lot of complicated chemistry that can be sensitive to how fast it is charged. Things can go wrong. Capacity loss is the most critical one.
It is possible to make batteries with very high capacity that might allow you to drive your electric car 1000 km, but after you've charged and discharged it a few times, you would lose about half of that capacity and range.
All rechargeable batteries deteriorate over time, but this negative effect is extra strong when the battery is subjected to fast charging. They have been able to see that the lithium ions, which are so important for the capacity of a battery, are converted into pure lithium metal and are no longer useful. And most importantly: this effect is greatly enhanced by fast charging.
During fast charging, the same number of ions move through the system, but much faster. All ions must find their place in the anode in a much shorter time.
When you charge at double speed, you have to move the same amount of ions and electrons in half the time. The most likely thing is you get these lithium ions building up and they just can't get to the graphite anymore. They get stuck there and there's a lot of heat, a lot of energy being put into them, and so they get reduced to lithium metal.
Donal P. Finegan et al, Spatial dynamics of lithiation and lithium plating during high-rate operation of graphite electrodes, Energy & Environmental Science (2020). DOI: 10.1039/d0ee01191f
https://techxplore.com/news/2021-10-fast-capacity-car-battery.html?...
Why do ducks move in a row in water?
The sight of ducklings paddling in a line behind their mother is a common sight in rivers and ponds.
But just why do they swim in that formation? Scientists think they have discovered the reason—which could have applications in maritime shipping too.
In a research paper published in the Journal of Fluid Mechanics, naval architecture experts conclude that ducklings benefit from 'wave riding' and 'wave passing."
Using a mathematical and numerical model, the researchers found that when a duckling swims at a 'sweet point' behind its mother a 'destructive wave interference phenomenon' occurs. This causes the wave drag of the duckling to turn positive meaning the baby bird is actually pushed forward by the wave.
Interestingly this wave-riding benefit appears to be passed down to the rest of the ducklings in the line formation. Starting from the third duckling the wave drag of individuals gradually tends towards zero, and a delicate dynamic equilibrium is achieved. Each individual under that equilibrium acts as a wave passer, passing the waves' energy to its trailing companion without any energy losses.
Wave riding and wave passing are probably the principal reasons for the evolution of swimming formation by waterfowl.
This study is the first to reveal the reasons why the formation movement of waterfowl can preserve individuals' energy expenditure.
These principles could be potentially applied to design modern freight carrying vessels, e.g. a water-train, to transport more cargoes without extra fuel cost.
Zhi-Ming Yuan et al, Wave-riding and wave-passing by ducklings in formation swimming, Journal of Fluid Mechanics (2021). DOI: 10.1017/jfm.2021.820
https://phys.org/news/2021-10-ducks-row.html?utm_source=nwletter&am...
Emerging infectious disease caused by a tick-borne nairovirus identified in Japan
A previously unknown virus that can infect humans and cause disease has been identified by scientists in Japan. The novel infectious virus, named Yezo virus, is transmitted by tick bites and causes a disease characterized by fever and a reduction in blood platelets and leucocytes. The discovery was made by researchers at Hokkaido University and the results have been published in the journal Nature Communications.
At least seven people have been infected with this new virus in Japan since 2014, but, so far, no deaths have been confirmed. The Yezo virus was discovered after a 41-year-old man was admitted to the hospital in 2019 with fever and leg pain after being bitten by an arthropod believed to be a tick while he was walking in a local forest in Hokkaido. He was treated and discharged after two weeks, but tests showed he had not been infected with any known viruses carried by ticks in the region. A second patient showed up with similar symptoms after a tick bite the following year.
Genetic analysis of viruses isolated from blood samples of the two patients found a new type of orthonairovirus, a class of nairovirus, that includes pathogens such as the Crimean-Congo haemorrhagic fever virus. The scientists named it Yezo virus, after a historical Japanese name for Hokkaido, a large island in the north of the country where the virus was discovered. The novel virus was found most closely related to Sulina virus and Tamdy virus, detected in Romania and Uzbekistan, respectively, the latter of which reportedly caused acute fever in humans recently in China.
The scientists then checked blood samples collected from hospital patients who showed similar symptoms after tick bites since 2014. They found additional positive samples from five patients. These patients, including the first two, had a fever and reduced blood platelets and leucocytes, and showed indicators of abnormal liver function.
To determine the likely source of the virus, the research team screened samples collected from wild animals in the area between 2010 and 2020. They found antibodies for the virus in Hokkaido shika deer and raccoons. They also found the virus RNA in three major species of ticks in Hokkaido. The Yezo virus seems to have established its distribution in Hokkaido, and it is highly likely that the virus causes the illness when it is transmitted to humans from animals via ticks.
https://www.sciencedaily.com/releases/2021/10/211004104237.htm
The consequences are dire for the health of a premature baby — too much oxygen can cause blindness, and too little oxygen can cause brain damage and other negative health effects. Some premature babies need the help of life-saving machines in a neonatal intensive care unit, or NICU, to provide oxygen that eases the struggle to take their first breaths. However, small, personalized adjustments — to either raise or lower the level of oxygen provided — must be made by hand under the careful attention of nurses and respiratory therapists. Now, a clinical trial will test a new device that could make those needed adjustments for premature babies in a NICU — automatically.
Nature is full of repeating patterns that are part of the beauty of our world. An international team, including a researcher from the University of Washington, used modern tools to explain repeating patterns of stones that form in cold landscapes.
The new study, published Oct. 5 in the Proceedings of the National Academy of Sciences, uses experimental tools to show how needles of ice growing randomly on frozen ground can gradually move rocks into regular, repeating patterns. The team, based mainly in China and Japan, uses a combination of novel experiments and computer modeling to describe these striking features with new theoretical insights.
"The presence of these amazing patterns that develop without any intervention from humans is pretty striking in nature.
One of the reasons for the patterns is needle ice. As the temperature drops, the moisture contained in the soil grows into spikes of ice crystals that protrude from the ground.
"When you go out in the backyard after a freezing night and you feel a little crunch under the foot, you're probably walking on needle ice.
As needle ice forms it tends to push up soil particles, and if there are any, small stones. More needle ice can form on patches of bare soil compared to rock-covered areas. The ice needles will slightly displace any remaining stones in the barer region. Over years, the stones begin to cluster in groups, leaving the bare patches essentially stone-free.
That kind of selective growth involves interesting feedbacks between the size of the stones, the moisture in the soil and the growth of the ice needles.
Watch a video that shows how this happens here:
https://movie-usa.glencoesoftware.com/video/10.1073/pnas.2110670118...
Anyuan Li et al, Ice needles weave patterns of stones in freezing landscapes, Proceedings of the National Academy of Sciences (2021). DOI: 10.1073/pnas.2110670118
https://www.washington.edu/news/2021/10/06/how-ice-needles-weave-pa...
Second, fallout from biomass burning is rich in micronutrients such as iron. Phytoplankton growth in much of the Southern Ocean is nutrient-limited so the increased fallout from Māori burning probably resulted in centuries of enhanced phytoplankton growth in large areas of the Southern Hemisphere.
Third, the results refine what is known about the timing of the arrival of the Māori in New Zealand, one of the last habitable places on earth to be colonized by humans. Māori arrival dates based on radiocarbon dates vary from the 13th to 14th century, but the more precise dating made possible by the ice core records pinpoints the start of large scale burning by early Māori in New Zealand to 1297, with an uncertainty of 30 years.
"From this study and other previous work this team has done such as on 2,000-year old lead pollution in the Arctic from ancient Rome, it is clear that ice core records are very valuable for learning about past human impacts on the environment. "Even the most remote parts of Earth were not necessarily pristine in preindustrial times."
Hemispheric black carbon increase after the 13th-century Māori arrival in New Zealand, Nature (2021). DOI: 10.1038/s41586-021-03858-9
https://phys.org/news/2021-10-early-human-impacted-earth-atmosphere...
Part 3
After consulting paleofire records from each of the three regions, only one viable possibility remained: New Zealand, where charcoal records showed a major increase in fire activity beginning about the year 1300. This date also coincided with the estimated arrival, colonization, and subsequent burning of much of New Zealand's forested areas by the Māori people.
This was a surprising conclusion, given New Zealand's relatively small land area and the distance (nearly 4,500 miles), that smoke would have travelled to reach the ice core site on James Ross Island.
"Compared to natural burning in places like the Amazon, or Southern Africa, or Australia, you wouldn't expect Māori burning in New Zealand to have a big impact, but it does over the Southern Ocean and the Antarctic Peninsula
--
The study findings are important for a number of reasons. First, the results have important implications for our understanding of Earth's atmosphere and climate. Modern climate models rely on accurate information about past climate to make projections for the future, especially on emissions and concentrations of light-absorbing black carbon linked to Earth's radiative balance. Although it is often assumed that human impacts during preindustrial times were negligible compared to background or natural burning, this study provides new evidence that emissions from human-related burning have impacted Earth's atmosphere and possibly its climate far earlier, and at scales far larger, than previously imagined.
part2
Did you think only industrial era impacted Earth's atmosphere? Then think again. Because ....
Several years ago, while analyzing ice core samples from Antarctica's James Ross Island, scientists noticed something unusual: a substantial increase in levels of black carbon that began around the year 1300 and continued to the modern day.
Black carbon, commonly referred to as soot, is a light-absorbing particle that comes from combustion sources such as biomass burning (e.g. forest fires) and, more recently, fossil fuel combustion. Working in collaboration with an international team of scientists from the United Kingdom, Austria, Norway, Germany, Australia, Argentina, and the U.S., McConnell, Chellman, and Mulvaney set out to uncover the origins of the unexpected increase in black carbon captured in the Antarctic ice.
The team's findings, which published this week in Nature, point to an unlikely source: ancient Māori land-burning practices in New Zealand, conducted at a scale that impacted the atmosphere across much of the Southern Hemisphere and dwarfed other preindustrial emissions in the region during the past 2,000 years.
The idea that humans at this time in history caused such a significant change in atmospheric black carbon through their land clearing activities is quite surprising.
We used to think that if you went back a few hundred years you'd be looking at a pristine, pre-industrial world, but it's clear from this study that humans have been impacting the environment over the Southern Ocean and the Antarctica Peninsula for at least the last 700 years.
To identify the source of the black carbon, the study team analyzed an array of six ice cores collected from James Ross Island and continental Antarctica using DRI's unique continuous ice-core analytical system. The method used to analyze black carbon in ice was first developed in McConnell's lab in 2007.
While the ice core from James Ross Island showed a notable increase in black carbon beginning around the year 1300, with levels tripling over the 700 years that followed and peaking during the 16th and 17th centuries, black carbon levels at sites in continental Antarctica during the same period of time stayed relatively stable.
Part 1
Two scientists won the Nobel Prize in chemistry Wednesday for finding an ingenious and environmentally cleaner way to build molecules—an approach now used to make a variety of compounds, including medicines and pesticides.
The work of Benjamin List and David W.C. MacMillan has allowed scientists to produce those molecules more cheaply, efficiently, safely and with significantly less hazardous waste.
It's already benefiting humankind greatly. It was the second day in a row that a Nobel rewarded work that had environmental implications.
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!