Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 58 minutes ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply 0 Likes
When two people book the same flight, they can get wildly different carbon footprints from online calculators. Many carbon calculators leave out big chunks of climate impact or rely on oversimplified…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 5 Replies 0 Likes
Crawly creepy creatures. Big eyes and protruding tongues. Hissing sounds and hoods in ready to attack poses.What would people do if they came across such things? Take a stick and hit them repeatedly…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 1 Reply 0 Likes
This mismatch is creating lots of problems for us and we need to change our thinking and behaviour.A new paper by evolutionary anthropologists argues that modern life has outpaced human evolution.…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Nov 14. 1 Reply 0 Likes
Credit: Environmental Science & Technology (2025). DOI:…Continue
Comment
Physicists show how frequencies can easily be multiplied without special circuitry
Digital technologies and devices are responsible for about ten percent of global electricity consumption, and the trend is rising sharply. It is therefore necessary to develop more efficient components for information processing.
A new discovery by physicists could make certain components in computers and smartphones obsolete. The team has succeeded in directly converting frequencies to higher ranges in a common magnetic material without the need for additional components. Frequency multiplication is a fundamental process in modern electronics. The team reports on its research in the latest issue of Science.
Non-linear electronic circuits are typically used to generate the high-frequency gigahertz signals needed to operate today's devices. The research team has now found a way to do this within a magnetic material without the electronic components that are usually used for this. Instead, the magnetization is excited by a low-frequency megahertz source. Using the newly discovered effect, the source generates several frequency components, each of which is a multiple of the excitation frequency. These cover a range of six octaves and reach up to several gigahertz.
The discovery could also help make digital technologies more energy efficient in the future.
Chris Koerner, Rouven Dreyer, Martin Wagener, Niklas Liebing, Hans G. Bauer, Georg Woltersdorf. Frequency multiplication by collective nanoscale spin-wave dynamics. Science, 2022; 375 (6585): 1165 DOI: 10.1126/science.abm6044
https://researchnews.cc/news/12096/Physicists-show-how-frequencies-...
A baby in North Carolina has received a first-of-its-kind heart transplant that may prevent his body from rejecting the organ without the need for lifelong drugs to suppress the immune system. The child, Easton Sinnamon, is the first person to receive a heart transplant along with implantation of thymus tissue from the same donor, according to a statement from Duke University, where the procedure was performed. Because the thymus plays an important role in immune system function – in particular, teaching the body to recognize its own cells and tissues versus foreign invaders – it's possible that this combination transplant could allow the child's body to accept the new heart as part of itself instead of treating it as a foreign organ.
Much more research is needed to see if this combination transplant allows Easton to live without immunosuppressive drugs – which are typically necessary in transplant patients to stop the body from rejecting the organ — as well as whether it could work for other transplant recipients.
If the approach proves successful, it could potentially "be applied to all solid organs down the road
Tests taken 172 days after the transplant show that the thymus tissue is working to produce immune cells known as T-cells in Easton's body, according to Duke University.
Although Easton is currently taking immunosuppressive drugs to prevent organ rejection, his doctors will attempt to taper him off the drugs in the next few months to see if his body treats the new organ as "self."
An unexpected link between tuberculosis and cancer may lead to new drug treatments for the bacterial disease that kills more than 1.5 million people each year, according to a study led by researchers .
The study found that lesions called granulomas in the lungs of people with active tuberculosis infections are packed with proteins known to tamp down the body's immune response to cancer cells or infection. Some types of cancer drugs target these immunosuppressive proteins. Because these medications are widely used in cancer patients, the researchers expect that clinical trials can be launched quickly to test whether they can combat tuberculosis infection.
The study suggests that unless you address the presence of these immunosuppressive proteins, you're not going to get an effective recruitment of the immune system to fight the bacteria.
Erin F. McCaffrey et al, The immunoregulatory landscape of human tuberculosis granulomas, Nature Immunology (2022). DOI: 10.1038/s41590-021-01121-x
https://medicalxpress.com/news/2022-03-cancer-drugs-tuberculosis.ht...
Scientists discover part of the origins of metastasis
Metastatic cells occur in many forms of cancer. They originate in primary tumors and then break away and migrate. They travel through the tissues surrounding them, through blood vessels or lymphatic channels. Along the way, they may attach to one or more organs—such as the lungs, brain, bones or liver—and form new tumors also called metastases. This spread reduces patients' chances of recovery.
Scientists at the University of Geneva have discovered some of the mechanisms by which these cells arise. This is due to cells that have narrowly escaped cell death (apoptosis) following a chemotherapeutic treatment. Those cells reprogram themselves to acquire metastatic skills. Thanks to this study, these cells—called PAME by the researchers—now appear as new therapeutic targets. These results can be read in the journal Cell Reports.
Thanks to recent research, the scientists have discovered that the experience of imminent death within the primary tumor pushes certain cells to acquire pro-metastatic states. This near-death experience occurs in particular in the context of certain treatments aimed at depriving cancer cells of energy or oxygen. The team observed that these cells, which should have died, reprogram themselves and then present a high metastatic risk. These cells are called PAME for "post-apoptotic pro-metastatic cells."
To reach these conclusions, the UNIGE team used tumor samples taken from two colon cancer patients. Tumor cells from these samples were then transplanted into mice, where they grew and formed new tumors. These cells were subjected to an imminent death experience causing endoplasmic reticulum stress similar to that caused by certain chemotherapeutic drugs. This allowed the development of PAME cells.
The scientists also discovered that PAMEs trigger a storm of cytokines—proteins and other factors that ensure cell-to-cell communication—inducing adjacent cells to become PAME-induced migratory cells (PIMS). These PIMs then associate with PAMEs and help them migrate to form metastases.
The present results open up promising new prospects for therapeutic management, including the prevention of the development of pro-metastatic fields generated by certain treatments.
Arwen Conod, Marianna Silvano, Ariel Ruiz i Altaba. On the origin of metastases: Induction of pro-metastatic states after impending cell death via ER stress, reprogramming, and a cytokine storm. Cell Reports, 2022; 38 (10): 110490 DOI: 10.1016/j.celrep.2022.110490
https://researchnews.cc/news/12034/Scientists-discover-part-of-the-...
Children are half as likely as adults to produce antibodies following COVID-19, according to a small study in Australia. There is growing evidence that kids mount a stronger and faster response to a SARS-CoV-2 infection. This might mean that they fend off the virus so quickly that it doesn’t have time to trigger antibody production. Because antibodies are probably important guards against reinfection, the findings raise questions about how well protected children might be against future infections.
--
Radiocarbon dating has unmasked two forged paintings in France. The paintings were supposedly impressionist and pointillist works from around the early twentieth century. Heritage scientists clipped tiny threads from canvases and plucked what appeared to be a paintbrush bristle trapped in the paint — all were dated to within the past 70 years. Radiocarbon dating is gaining steam in the forensic analysis of artwork, thanks to advances that require smaller samples than ever before — “just a few crumbs of dust, basically”, says chemist Laura Hendriks.
--
“By the end of university introductory physics classes, women who r...
Women feel less recognized by their teachers as being ‘physics people’ compared with men, reveals research by physicist Chandralekha Singh and her collaborators. Physicists can help by offering better support, she says.
The formation of the greenhouse gas methane is based on a universal mechanism. An interdisciplinary research team found out that methane arises in the cells of organisms by a purely chemical process. The studies provide, inter alia, an explanation for why methane is released not only through the activity of special microorganisms but—as observed for quite some time now—also by plants and mushrooms. The current findings are an important step towards understanding aerobic methane formation in the environment.
It was long assumed that methane is only formed through so-called ancient bacteria or archaea when they decompose organic substances in the absence of oxygen. When scientific observations showed that plants, mushrooms, algae and cyanobacteria also form methane in the presence of oxygen, this was initially attributed to enzymatic activities.
Up until now, however, no enzyme responsible for doing that has been found in any of these organisms. Now the scientists have succeeded in showing that methane can also be formed without such a catalyst—with the aid of a purely chemical mechanism.
This mechanism is driven by reactive oxygen species (ROS) that arise through the metabolic activity of cells. In interplay with the essential element iron, such oxygen compounds, in all organisms, are involved in a chemical reaction which, through various steps, leads to the formation of highly reactive metabolites. These substances promote the splitting-off of a methyl radical of sulfur and nitrogen compounds. Methane is formed through the subsequent reaction with hydrogen atoms. With the aid of the bacteria Bacillus subtilis, the researchers were able to show that the extent of methane formation directly relates to metabolic activity: The more active the cell, the more methane is formed.
Leonard Ernst et al, Methane formation driven by reactive oxygen species across all living organisms, Nature (2022). DOI: 10.1038/s41586-022-04511-9
https://phys.org/news/2022-03-universal-mechanism-methane-formation...
People who live in more polluted areas, such as near busy roads, are at a higher risk of poor mental wellbeing, new research has found.
The study examined four types of air pollutants—nitrogen dioxide, sulfur dioxide and two types of particulate matter, those with diameters of less than 10 and 2.5µm (micrometers)—and linked these to individual-level health data.
It found a connection between air pollution and people reporting low mental wellbeing affects such as feeling unhappy, being under stress and not being able to concentrate.
It also found a potential link between increasing concentration of sulfur dioxide and particulate matter and elevated scores of poor mental wellbeing for people from a Pakistani/Bangladeshi origin in comparison with British-White people, and for non-UK born individuals in comparison with those born in the UK.
Nitrogen dioxide is mainly produced from traffic exhaust around busy roads, while sulfur dioxide is mainly an industrial type of pollutant. Nitrogen dioxide and sulfur dioxide are gaseous types of pollutants. Particulate matter is related to both traffic exhaust and industrial processes and it is made up of microscopic solid or liquid matter suspended in the atmosphere.
Mary Abed Al Ahad et al, Air pollution and individuals' mental well-being in the adult population in United Kingdom: A spatial-temporal longitudinal study and the moderating effect of ethnicity, PLOS ONE (2022). DOI: 10.1371/journal.pone.0264394
https://phys.org/news/2022-03-polluted-areas-poor-mental-wellbeing....
The researchers used global maps of the current growing areas of 25 major crops, including wheat, barley and soybean, which together account for over three quarters of croplands worldwide. They developed a mathematical model to look at all possible ways to distribute this cropland across the globe, while maintaining overall production levels for each crop. This allowed them to identify the option with the lowest environmental impact.
Relocating croplands could drastically reduce the environmental impacts of global food production, Nature Communications Earth & Environment, DOI: 10.1038/s43247-022-00360-6
https://phys.org/news/2022-03-relocating-farmland-clock-twenty-year...
Part 2
Scientists have produced a map showing where the world's major food crops should be grown to maximize yield and minimize environmental impact. This would capture large amounts of carbon, increase biodiversity, and cut agricultural use of freshwater to zero.
The reimagined world map of agriculture includes large new farming areas for many major crops around the cornbelt in the mid-western US, and below the Sahara desert. Huge areas of farmland in Europe and India would be restored to natural habitat.
The redesign—assuming high-input, mechanized farming—would cut the carbon impact of global croplands by 71%, by allowing land to revert to its natural, forested state. This is the equivalent of capturing twenty years' worth of our current net CO2 emissions. Trees capture carbon as they grow, and also enable more carbon to be captured by the soil than when crops are grown in it.
In this optimized scenario, the impact of crop production on the world's biodiversity would be reduced by 87%. This would drastically reduce the extinction risk for many species, for which agriculture is a major threat. The researchers say that croplands would quickly revert back to their natural state, often recovering their original carbon stocks and biodiversity within a few decades.
The redesign would eliminate the need for irrigation altogether, by growing crops in places where rainfall provides all the water they need to grow. Agriculture is currently responsible for around 70% of global freshwater use, and this causes drinking water shortages in many drier parts of the world.
Part 1
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!