SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 5 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

Eureka! This universe is not a computer simulation!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply

Mathematical proof debunks the idea that the universe is a computer simulationDidn’t know how to disprove this, but I always wanted to: It's a plot device beloved by science fiction - our entire…Continue

How forever chemicals (PFAS) are removed

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Oct 25. 1 Reply

Q: A question for science : what process, substance or organic material will capture forever chemicals?K: Various substances and processes can capture "forever chemicals"—or per- and polyfluoroalkyl…Continue

Should scientists even bother about the celebrity status? NO!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Oct 24. 1 Reply

Q: Kim Kardasian is a Celebrity. Why? Neil deGrasse Tyson is the only celebrity scientist I can think of. He's fascinating. Why are there so few celebrity scientists?Krishna: Should we even bother…Continue

How higher states of consciousness can forever change your perception of reality

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Oct 22. 1 Reply

A few years ago, I climbed over a gate and found myself gazing down at a valley. After I'd been walking for a few minutes, looking at the fields and the sky, there was a shift in my perception.…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on December 7, 2021 at 8:48am

Researchers develop ice cube that doesn't melt or grow mold

Researchers have developed a new type of cooling cube that could revolutionize how food is kept cold and shipped fresh without relying on ice or traditional cooling packs.

These plastic-free, "jelly ice cubes" do not melt, are compostable and anti-microbial, and prevent cross-contamination.

The cooling cubes contain more than 90 percent water and other components to retain and stabilize the structure. They are soft to the touch like a gelatin dessert and change color depending on temperature. These reusable cubes can be designed or cut to any shape and size needed. You can use it for 13 hours for cooling, collect it, rinse it with water and put it in the freezer to freeze again for the next use.

The jelly ice cubes offer an alternative to traditional ice and could potentially reduce  consumption and environmental impact. They also offer stable temperatures to reduce  spoilage and could be ideal for meal prep companies, shipping businesses and food producers who need to keep items cold.

The application could potentially reduce  in the food supply chain and food waste by controlling microbial contaminations. The research was published in the American Chemical Society's journal, Sustainable Chemistry & Engineering.

Jiahan Zou et al, Sustainable and Reusable Gelatin-Based Hydrogel "Jelly Ice Cubes" as Food Coolant. II: Ideal Freeze–Thaw Conditions, ACS Sustainable Chemistry & Engineering (2021). DOI: 10.1021/acssuschemeng.1c06309

https://phys.org/news/2021-11-ice-cube-doesnt-mold.html?utm_source=...

Comment by Dr. Krishna Kumari Challa on December 7, 2021 at 8:27am

The first international framework on open science was adopted by 193 countries attending UNESCO’s General Conference. By making science more transparent and more accessible, the UNESCO Recommendation on Open Science will make science more equitable and inclusive. 

Through open science, scientists and engineers use open licenses to share their publications and data, software and even hardware more widely. Open science should, thus, enhance international scientific cooperation. 

Open science can be a powerful tool to reduce inequalities between and within countries and further the human right to enjoy and benefit for scientific progress, as stipulated in Article 27 of the Universal Declaration on Human Rights.
Welcome this collaborative international approach. Open science is a great aim. Working together and sharing insights as a global science community is the best way to push the boundaries of knowledge and discovery.
Comment by Dr. Krishna Kumari Challa on December 6, 2021 at 12:04pm

Humans Are Doomed to Go Extinct

Habitat degradation, low genetic variation and declining fertility are setting Homo sapiens up for collapse 

Comment by Dr. Krishna Kumari Challa on December 6, 2021 at 12:01pm

A Fusion Reaction Has Generated More Energy Than Absorbed by The Fuel

For the first time, a fusion reaction has achieved a record 1.3 megajoule energy output – and for the first time, exceeding energy absorbed by the fuel used to trigger it.

Inertial confinement fusion involves creating something like a tiny star. It starts with a capsule of fuel, consisting of deuterium and tritium – heavier isotopes of hydrogen. This fuel capsule is placed in a hollow gold chamber about the size of a pencil eraser called a hohlraum.

Then, 192 high-powered laser beams are blasted at the hohlraum, where they are converted into X-rays. These X-rays implode the fuel capsule, heating and compressing it to conditions comparable to those in the center of a star – temperatures in excess of 100 million degrees Celsius (180 million Fahrenheit) and pressures greater than 100 billion Earth atmospheres – turning the fuel capsule into a tiny blob of plasma.

And, just as hydrogen fuses into heavier elements in the heart of a main-sequence star, so too does the deuterium and tritium in the fuel capsule. The whole process takes place in just a few billionths of a second. The goal is to achieve ignition – a point at which the energy generated by the fusion process exceeds the total energy input.

The experiment, conducted on 8 August, fell just short of that mark; the input from the lasers was 1.9 megajoules. But it's still tremendously exciting, because according to the team's measurements, the fuel capsule absorbed over five times less energy than it generated in the fusion process. The result also opens up new avenues for experimental research.

https://meetings.aps.org/Meeting/DPP21/Session/AR01.1

https://www.sciencealert.com/for-the-first-time-a-fusion-reaction-h...

Comment by Dr. Krishna Kumari Challa on December 6, 2021 at 9:20am

The researchers began their investigation into how cells can maintain mitochondrial function without oxygen by using mass spectrometry to measure the quantities of molecules called metabolites that are produced through  in both normal and low-oxygen conditions. When cells were deprived of oxygen, researchers noticed a high level of a molecule called succinate.

When you add electrons to oxygen at the end of the electron transport chain, it picks up two protons and becomes water. When you add electrons to fumarate, it becomes succinate. This led the researchers to think that maybe this accumulation of succinate that's occurring could actually be caused by fumarate being used as an electron acceptor, and that this reaction could explain the maintenance of mitochondrial functions in hypoxia.

Usually, the fumarate-succinate reaction runs the other direction in cells—a  called the SDH complex takes away electrons from succinate, leaving fumarate. For the opposite to happen, the SDH complex would need to be running in reverse.

Through a series of assays, however, the researchers were able to ascertain that this complex was indeed running in reverse in cultured cells, largely due to accumulation of a molecule called ubiquinol, which the researchers observed to build up under low-oxygen conditions.

https://phys.org/news/2021-12-tissues-oxygen.html?utm_source=nwlett...

Part 2

Comment by Dr. Krishna Kumari Challa on December 6, 2021 at 9:18am

Some tissues can 'breathe' without oxygen

Humans need oxygen molecules for a process called cellular respiration, which takes place in our cells' mitochondria. Through a series of reactions called the electron transport chain, electrons are passed along in a sort of cellular relay race, allowing the cell to create ATP, the molecule that gives our cells energy to complete their vital functions.

At the end of this chain, two electrons remain, which are typically passed off to oxygen, the "terminal electron acceptor." This completes the reaction and allows the process to continue with more electrons entering the electron transport chain.

In the past, however, scientists have noticed that cells are able to maintain some functions of the electron transport chain, even in the absence of oxygen. "This indicated that mitochondria could actually have partial function, even when oxygen is not the electron acceptor. How does this work? How are mitochondria capable of maintaining these electron inputs when oxygen is not the terminal electron acceptor?"

Scientists  have found the answer to these questions recently. Their research shows that when cells are deprived of oxygen, another molecule called fumarate can step in and serve as a terminal electron acceptor to enable mitochondrial function in this environment. 

The research answers a long-standing mystery in the field of cellular metabolism, and could potentially inform research into diseases that cause low oxygen levels in tissues, including ischemia, diabetes and cancer.

Jessica B. Spinelli et al, Fumarate is a terminal electron acceptor in the mammalian electron transport chain, Science (2021). DOI: 10.1126/science.abi7495

Part 1

Comment by Dr. Krishna Kumari Challa on December 5, 2021 at 12:07pm

Device instantly detects sepsis via sweat

 Every year, millions of  adults develop sepsis, a life-threatening complication that arises when the body has an overwhelming immune response to an infection. According sepsis causes more than 20 percent of all deaths worldwide.

A crucial aspect of treating sepsis is to catch it at an early stage when a patient’s infection is still curable. Current methods to diagnose sepsis, however, rely on tests that can take days to yield results, while early sepsis can turn into full-blown septic shock within only one hour after the first symptoms emerge.

This means that doctors often need to wait for the results of a test, and the results may not even be accurate if the patient developed a condition after the sample was taken.

The students consulted with sepsis survivors, scientists, and clinicians at the University of Rochester Medical Center to design a sepsis-sensing device, which they named “Bio-Spire,” a combination of “biology” and “perspire.” Bio-Spire is a biosensor that continuously monitors the levels of biomarkers in sweat. Unlike blood, sweat is a noninvasive medium to collect, and unlike saliva or urine, biomarkers in sweat can be continuously analyzed. The levels of biomarkers in blood and in sweat are correlated, so changes in the amount of biomarkers in sweat are indicative of changes in the blood.

That is, a change in biomarker levels in a patient’s sweat can signify a deterioration of the patient’s condition—and may signify sepsis.

Doctors use many different tools to diagnose patients, one of which is the presence and concentration of certain biomarkers—molecules such as proteins or sugar that are associated with a particular disease, condition, or biological process. There are several ways to measure biomarker concentrations, including test strips and lab-on-a-chip devices, but many of these approaches only show biomarker concentrations at one specific point in time. These methods can also be expensive, and many take hours to perform.

In order to address this problem, a team of 12 undergraduate students  developed a novel device that instantaneously diagnoses sepsis based on biomarkers in a person’s sweat. The device offers a noninvasive way to monitor sepsis in real-time and uses materials that are environmentally friendly and affordable, making the device easily deployable in low-income countries.

Bio-Spire is designed to collect a tiny amount of sweat from a patient’s skin and wick the sweat past an integrated set of electrodes covered in biomarker detectors. The biomarker detectors consist of short pieces of DNA receptors attached to a small sheet of graphene—an ultra-thin layer of material that is highly conductive. The students synthetically created their own graphene and DNA in an environmentally-friendly manner by using engineered biological components.

When the sleeve-like device is placed on a patient’s arm, biomarkers associated with sepsis bind to the DNA receptors, changing the conductivity of the graphene sheet and triggering an electrical resistance in the electrodes, which is then recorded on a computer. The students created software that displays the concentrations of sepsis biomarkers in real time, permitting health care workers to receive up-to-the-minute updates on a patient’s condition.

https://www.rochester.edu/newscenter/what-is-sepsis-diagnosis-devic...

https://researchnews.cc/news/10312/Rochester-students--award-winnin...

Comment by Dr. Krishna Kumari Challa on December 5, 2021 at 11:18am

Pharmaceutical waste contaminates India's main rivers

India's major rivers are thick with heavy metals, dyes, toxic chemicals and pharmaceutical products, a study shows.

The study, published in December in the journal Science of the Total Environment, found high concentrations of pharmaceutical waste as well as toxic metals such as arsenic, zinc, chromium, lead and nickel in the Cauvery, a major river in southern India.

These  observations are alarming. The researchers' environmental risk assessment has shown that pharmaceutical contaminants pose medium to high risk to selected aquatic lifeforms of the riverine system.

Pharmaceutical products found in the river included anti-inflammatories like ibuprofen and diclofenac, anti-hypertensives such as atenolol and isoprenaline, enzyme inhibitors like perindopril, stimulants like caffeine, antidepressants such as carbamazepine, and antibiotics such as ciprofloxacin.

India is among the world's biggest producers of pharmaceutical drugs. Although there are regulations governing effluents from manufacturing units, there is very little real monitoring by regulators such as the state pollution control boards. For instance, the Karnataka State Pollution Control Board takes samples only once in every three months and only during the day whereas illegal dumping of effluents is often done at night.

"Clearly there is a need to ensure that wastewater treatment systems are working optimally to reduce the level of contaminants reaching the rivers," the researchers said.

Jayakumar Renganathan et al, Spatio-temporal distribution of pharmaceutically active compounds in the River Cauvery and its tributaries, South India, Science of The Total Environment (2021). DOI: 10.1016/j.scitotenv.2021.149340

https://phys.org/news/2021-12-pharmaceutical-contaminates-india-mai...

Provided by SciDev.Net

Comment by Dr. Krishna Kumari Challa on December 5, 2021 at 11:12am

When variations in Earth's orbit drive biological evolution

Coccolithophores are microscopic algae that form tiny limestone plates, called coccoliths, around their single cells. The shape and size of coccoliths varies according to the species. After their death, coccolithophores sink to the bottom of the ocean and their coccoliths accumulate in sediments, which faithfully record the detailed evolution of these organisms over geological time.

A team of scientists led by CNRS researchers show, in an article published in Nature on December 1, 2021, that certain variations in Earth's orbit have influenced the evolution of coccolithophores. To achieve this, no less that 9 million coccoliths, spanning an interval of 2.8 million years and several locations in the tropical ocean, were measured and classified using automated microscope techniques and artificial intelligence.

The researchers observed that coccoliths underwent cycles of higher and lower diversity in size and shape, with rhythms of 100 and 400 thousand years. They also propose a cause: the more or less circular shape of Earth's orbit around the Sun, which varies at the same rhythms. Thus, when Earth's orbit is more circular, as is the case today (this is known as low eccentricity), the equatorial regions show little seasonal variation and species that are not very specialized dominate all the oceans. Conversely, as eccentricity increases and more pronounced seasons appear near the equator, coccolithophores diversify into many specialized species, but collectively produce less limestone.

Crucially, due to their abundance and , these organisms are responsible for half of the limestone (, partly composed of carbon) produced in the oceans and therefore play a major role in the carbon cycle and in determining  chemistry. It is therefore likely that the cyclic abundance patterns of these limestone producers played a key role in ancient climates, and may explain hitherto mysterious climate variations in past warm periods.

In other words, in the absence of ice, the biological evolution of micro-algae could have set the tempo of climates. This hypothesis remains to be confirmed.

Luc Beaufort, Cyclic evolution of phytoplankton forced by changes in tropical seasonality, Nature (2021). DOI: 10.1038/s41586-021-04195-7www.nature.com/articles/s41586-021-04195-7

https://phys.org/news/2021-12-variations-earth-orbit-biological-evo...

Comment by Dr. Krishna Kumari Challa on December 5, 2021 at 11:08am

Safely delivering radiation to cancer patients in a 'FLASH'

Researchers at Lawrence Livermore National Laboratory (LLNL) have shown for the first time the potential for linear induction accelerators (LIAs) to deliver effective, targeted doses of "FLASH" radiation to cancer patients. The new technique selectively kills cancer cells with minimal damage to healthy cells. The approach is outlined in a Scientific Reports paper.

Efforts to deliver a rapid, high, targeted dose of therapy radiation, or FLASH radiotherapy (FLASH-RT) at the required depth, have required large, complex machines the size of gymnasiums and have so far proven impractical for clinical use. In the Scientific Reports paper, the authors note that LIAs powerful enough to deliver the necessary dose rate to cancer cells can be built only 3 meters long.

Researchers have combined technologies that were developed for weapons—either diagnostics or weapon design itself—and spinning off something that could potentially be a major breakthrough in cancer radiotherapy.

 Stephen E. Sampayan et al, Megavolt bremsstrahlung measurements from linear induction accelerators demonstrate possible use as a FLASH radiotherapy source to reduce acute toxicity, Scientific Reports (2021). DOI: 10.1038/s41598-021-95807-9

https://phys.org/news/2021-12-safely-cancer-patients.html?utm_sourc...

 

Members (22)

 
 
 

© 2025   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service