Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 12 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 13 hours ago. 1 Reply 0 Likes
Type 5 diabetes has just been recognized as a…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 15 hours ago. 1 Reply 0 Likes
Q: Is XX always mean female and XY always male?Krishna: Things are not that easy to determine. Chromosomal information does not always align with an individual's gender identity.The sex chromosomes…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply 0 Likes
The problem is simple: it's hard to know whether a photo's real or not anymore. Photo manipulation tools are so good, so common and easy to use, that a picture's truthfulness is no longer…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa May 8. 12 Replies 0 Likes
Headlines in the media screaming: Humans dump 8 million tonnes of plastics into the oceans each year. That's five grocery bags of plastic for every foot of coastline in the world.Plastic, plastic,…Continue
Comment
A revolutionary technology developed could dramatically improve the wellbeing of diabetic patients: an insulin oral delivery system that could replace traditional subcutaneous injections without the side effects caused by frequent injections.
Using prepared layers of nanosheets with insulin loaded in between layers to protect it, the researchers developed gastro-resistant imine-linked-covalent organic framework nanoparticles (nCOFs) that exhibited insulin protection in the stomach as well in diabetic test subjects whose sugar levels completely returned to normal within two hours after swallowing the nanoparticles.
Farah Benyettou et al. In vivo oral insulin delivery via covalent organic frameworks, Chemical Science (2021). DOI: 10.1039/D0SC05328G
https://phys.org/news/2021-04-materials-oral-delivery-insulin-medic...
Remote-controlled Venus flytrap "robo-plants" and crops that tell farmers when they are hit by disease could become reality after scientists developed a high-tech system for communicating with vegetation.
Researchers in Singapore linked up plants to electrodes capable of monitoring the weak electrical pulses naturally emitted by the greenery.
The scientists used the technology to trigger a Venus flytrap to snap its jaws shut at the push of a button on a smartphone app.
They then attached one of its jaws to a robotic arm and got the contraption to pick up a piece of wire half a millimetre thick, and catch a small falling object.
The technology is in its early stages, but researchers think it could eventually be used to build advanced "plant-based robots" that can pick up a host of fragile objects which are too delicate for rigid, robotic arms. These kinds of nature robots can be interfaced with other artificial robots (to make) hybrid systems.
The system can also pick up signals emitted by plants, raising the possibility that farmers will be able to detect problems with their crops at an early stage.
"By monitoring the plants' electrical signals, we may be able to detect possible distress signals and abnormalities. Farmers may find out when a disease is in progress, even before full-blown symptoms appear on the crops.
https://phys.org/news/2021-04-robo-plants-scientists-fuse-nature-te...
**
In recent years, scientists have developed many strains of engineered bacteria that can be used as sensors to detect environmental contaminants such as heavy metals. If deployed in the natural environment, these sensors could help scientists track how pollutant levels change over time, over a wide geographic area.
MIT engineers have now devised a way to make this kind of deployment safer, by encasing bacterial sensors in a tough hydrogel shell that prevents them from escaping into the environment and potentially spreading modified genes to other organisms.
"Right now there are a lot of whole-cell biosensors being developed, but applying them in the real world is a challenge because we don't want any genetically modified organisms to be able to exchange genetic material with wild-type microbes.
Researchers showed that they could embed E. coli into hydrogel spheres, allowing them to detect the contaminants they're looking for while remaining isolated from other organisms. The shells also help to protect the sensors from environmental damage.
Tzu-Chieh Tang et al. Hydrogel-based biocontainment of bacteria for continuous sensing and computation, Nature Chemical Biology (2021). DOI: 10.1038/s41589-021-00779-6
https://phys.org/news/2021-04-safer-deploy-bacteria-environmental-s...
**
The problems we face with
Forever ChemicalsForever chemicals are used in everything from rain jackets to jet fuel. But the chemistry behind what makes them useful also makes them stick around in the environment and us...forever?
Could microbes save us from PFAS? You can read about the study we mention here: https://cen.acs.org/environment/persistent-pollutants/microbes-save...
Russian researchers have developed an inexpensive, safe, and reliable surface disinfection technology for packed eggs. This technology helps to kill bacteria, including salmonella, on eggshells. Also, it allows growing broiler chickens with strong immunity to viral diseases. Packed eggs are disinfected with an electron beam for 50 nanoseconds (one-billionth of a second). Disinfection takes place in plastic containers. The description of the technology was published in Food and Bioproducts Processing.
Geoengineering is just a partial solution to fight climate change
--
The ocean's "biological pump" describes the many marine processes that work to take up carbon dioxide from the atmosphere and transport it deep into the ocean, where it can remain sequestered for centuries. This ocean pump is a powerful regulator of atmospheric carbon dioxide and an essential ingredient in any global climate forecast.
--
Polyurethanes, a type of plastic, are nearly everywhere—in shoes, clothes, refrigerators and construction materials. But these highly versatile materials can have a major downside. Derived from crude oil, toxic to synthesize, and slow to break down, conventional polyurethanes are not environmentally friendly. Today, researchers discuss devising what they say should be a safer, biodegradable alternative derived from fish waste—heads, bones, skin and guts—that would otherwise likely be discarded.
--
For centuries, people in Baltic nations have used ancient amber for medicinal purposes. Even today, infants are given amber necklaces that they chew to relieve teething pain, and people put pulverized amber in elixirs and ointments for its purported anti-inflammatory and anti-infective properties. Now, scientists have pinpointed compounds that help explain Baltic amber's therapeutic effects and that could lead to new medicines to combat antibiotic-resistant infections.
--
As the world awaits the upcoming Olympic games, a new method for detecting doping compounds in urine samples could level the playing field for those trying to keep athletics clean. Today, scientists report an approach using ion mobility-mass spectrometry to help regulatory agencies detect existing dopants and future "designer" compounds.
Nine of the hottest years in human history have occurred in the last decade. Without a major shift in this climate trajectory, the future of life on Earth is in question. Should humans, whose fossil-fueled society is driving climate change, use technology to put the brakes on global warming?
Every month since September 2019 the Climate Intervention Biology Working Group, a team of internationally recognized experts in climate science and ecology, has gathered remotely to bring science to bear on that question and the consequences of geoengineering a cooler Earth by reflecting a portion of the sun's radiation away from the planet—a climate intervention strategy known as solar radiation modification (SRM).
The group's seminal paper, "Potential ecological impacts of climate intervention by reflecting sunlight to cool Earth," was published in the most recent Proceedings of the National Academy of Sciences (PNAS).
The costs and technology needed to reflect the Sun's heat back into space are currently more attainable than other climate intervention ideas like absorbing carbon dioxide (CO2) from the air.
Scientific investigation into how a climate intervention strategy known as solar radiation modification (SRM), in tandem with greenhouse gas emissions reduction, would affect the natural world is being studied.
The feasibility of planetary-wide SRM efforts hinge on accurate predictions of its myriad outcomes provided by the well-established computer simulations of the Geoengineering Model Intercomparison Project (GeoMIP).
While climate models have become quite advanced in predicting climate outcomes of various geoengineering scenarios, we have very little understanding of what the possible risks of these scenarios might be for species and natural systems. Are the risks for extinction, species community change, and the need for organisms to migrate to survive under SRM greater than those of climate change, or does SRM reduce the risks caused by climate change?
Most of the GeoMIP models only simulate abiotic variables, but what about all of the living things that are affected by climate and rely on energy from the sun?
"We need to better understand the possible impacts of SRM on everything from soil microorganisms to monarch butterfly migrations to marine systems."
Phoebe L. Zarnetske el al., "Potential ecological impacts of climate intervention by reflecting sunlight to cool Earth," PNAS (2021). www.pnas.org/cgi/doi/10.1073/pnas.1921854118
https://phys.org/news/2021-04-sun-reflector-earth-scientists-explor...
Climate Change is affecting you personally. Here's how
Researchers with the Wildlife Conservation Society's (WCS) Congo Program and the Nouabalé-Ndoki Foundation found that female putty-nosed monkeys (Cercopithecus nictitans) use males as "hired guns" to defend from predators such as leopards.
Publishing their results in the journal Royal Society Open Science, the team discovered that female monkeys use alarm calls to recruit males to defend them from predators. The researchers conducted the study among 19 different groups of wild putty-nosed monkeys, a type of forest guenon, in Mbeli Bai, a study area within the forests in Nouabalé-Ndoki National Park, Northern Republic of Congo.
The results promote the idea that females' general alarm requires males to assess the nature of the threat and that it serves to recruit males to ensure group defense. Females only cease the alarm call when males produce calls associated with anti-predator defense. Results suggest that alarm-calling strategies depend on the sex of the signaler. Females recruit males, who identify themselves while approaching, for protection. Males reassure their female of their quality in predation defense, probably to assure future reproduction opportunities.
Males advertise their commitment to serve as hired guns by emitting general "pyow" calls while approaching the rest of their group—a call containing little information about ongoing events, but cues to male identity, similar as to a signature call. Hearing his "pyow" call during male approaches enables females to identify high quality group defenders already from a distance. This might contribute to long-term male reputation in groups, which would equip females to choose males that ensure their offspring's survival most reliably.
Frederic Gnepa Mehon et al, Female putty-nosed monkeys ( Cercopithecus nictitans ) vocally recruit males for predator defense, Royal Society Open Science (2021). DOI: 10.1098/rsos.202135
https://phys.org/news/2021-03-female-monkeys-males-hired-guns.html?...
Researchers with the CERN-based ALPHA collaboration have announced the world's first laser-based manipulation of antimatter, leveraging a laser system to cool a sample of antimatter down to near absolute zero. The achievement, detailed in an article published recently and featured on the cover of the journal Nature, will significantly alter the landscape of antimatter research and advance the next generation of experiments.
Antimatter is the otherworldly counterpart to matter; it exhibits near-identical characteristics and behaviors but has opposite charge. Because they annihilate upon contact with matter, antimatter atoms are exceptionally difficult to create and control in our world and had never before been manipulated with a laser.
These results are the culmination of a years-long program of research and engineering.
Laser cooling of antihydrogen atoms , Nature (2021). DOI: 10.1038/s41586-021-03289-6
https://phys.org/news/2021-03-canadian-built-laser-chills-antimatte...
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!