Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 16 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 16 hours ago. 1 Reply 0 Likes
As we age, it's common to notice posture changes: shoulders rounding, head leaning forward, back starting to curve. You might associate this with older adults and wonder: will this happen to me? Can…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Live and on-demand video constituted an estimated …Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 2 Replies 0 Likes
Some artists think that scientists can't see the beauty of this universe. They just destroy things in order to study but can't really find out what they are seeking. I am sure this is a myth. For…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Sunday. 1 Reply 2 Likes
Q: Why do allergies and autoimmune diseases develop? Why does our immune system become so destructive sometimes?Krishna: It is difficult to answer the 'why' question because the research on this is…Continue
Comment
How did life get started on Earth? And how are we using what we know to look for it throughout the galaxy?
At first glance, the fabric looks like a pretty if not especially original scarf, with turquoise, blue and orange stripes in an open weave. But this fabric can communicate.
It's wearable, foldable and washable, but it's also a fully functioning display—capable of flashing messages or images, or even being used with a keyboard.
it could revolutionize communication and "help individuals with voice, speech or language difficulties to express themselves to others".
Large-area display textiles integrated with functional systems, Nature (2021). DOI: 10.1038/s41586-021-03295-8 , dx.doi.org/10.1038/s41586-021-03295-8
https://techxplore.com/news/2021-03-scarf-scientists-message-fabric...
**
Recent studies estimate that we use an astounding 129 billion face masks globally every month—that is 3 million a minute. Most of them are disposable face masks made from plastic microfibers.
With increasing reports on inappropriate disposal of masks, it is urgent to recognize this potential environmental threat and prevent it from becoming the next plastic problem.
Disposable masks are plastic products, that cannot be readily biodegraded but may fragment into smaller plastic particles, namely micro- and nanoplastics that widespread in ecosystems.
The enormous production of disposable masks is on a similar scale as plastic bottles, which is estimated to be 43 billion per month. However, different from plastic bottles, (of which app. 25 pct. is recycled), there is no official guidance on mask recycle, making it more likely to be disposed of as solid waste
If not disposed of for recycling, like other plastic wastes, disposable masks can end up in the environment, freshwater systems, and oceans, where weathering can generate a large number of micro-sized particles (smaller than 5 mm) during a relatively short period (weeks) and further fragment into nanoplastics (smaller than 1 micrometer).
"A newer and bigger concern is that the masks are directly made from microsized plastic fibers (thickness of ~1 to 10 micrometers). When breaking down in the environment, the mask may release more micro-sized plastics, easier and faster than bulk plastics like plastic bags.
How can you solve it?
Researchers recommend these solutions:
Elvis Genbo Xu et al, Preventing masks from becoming the next plastic problem, Frontiers of Environmental Science & Engineering (2021). DOI: 10.1007/s11783-021-1413-7
https://phys.org/news/2021-03-masks-plastic-timebomb.html?utm_sourc...
Photosynthetic organisms harvest light from the sun to produce the energy they need to survive. A new paper published by University of Chicago researchers reveals their secret: exploiting quantum mechanics.
Before this study, the scientific community saw quantum signatures generated in biological systems and asked the question, were these results just a consequence of biology being built from molecules, or did they have a purpose?" said Greg Engel, Professor of Chemistry and senior author on the study. "This is the first time we are seeing biology actively exploiting quantum effects.
The scientists studied a type of microorganism called green sulfur bacteria. These bacteria need light to survive, but even small amounts of oxygen can damage their delicate photosynthetic equipment. So they must develop ways to minimize the damage when the bacterium does encounter oxygen.
To study this process, researchers tracked the movement of energy through a photosynthetic protein under different conditions—with oxygen around, and without.
They found that the bacterium uses a quantum mechanical effect called vibronic mixing to move energy between two different pathways, depending on whether or not there's oxygen around. Vibronic mixing involves vibrational and electronic characteristics in molecules coupling to one another. In essence, the vibrations mix so completely with the electronic states that their identities become inseparable. This bacterium uses this phenomenon to guide energy where it needs it to go.
If there's no oxygen around and the bacterium is safe, the bacterium uses vibronic mixing by matching the energy difference between two electronic states in an assembly of molecules and proteins called the FMO complex, with the energy of the vibration of a bacteriochlorophyll molecule. This encourages the energy to flow through the 'normal' pathway toward the photosynthetic reaction center, which is packed full of chlorophyll.
But if there is oxygen around, the organism has evolved to steer the energy through a less direct path where it can be quenched. (Quenching energy is similar to putting a palm on a vibrating guitar string to dissipate energy.) This way, the bacterium loses some energy but saves the entire system.
Jacob S. Higgins et al, Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states to steer exciton energy transfer, Proceedings of the National Academy of Sciences (2021). DOI: 10.1073/pnas.2018240118
https://phys.org/news/2021-03-bacteria-exploit-quantum-mechanics.ht...
An international research team has developed a new iron-cobalt-nickel nanocomposite with tunable magnetic properties. The nanocomposite could be used to protect money and securities from counterfeiting.
The new iron-cobalt-nickel nanocomposite was obtained by chemical precipitation, followed by a reduction process.
The new composite was observed to possess high value of coercivity, which makes the technology applicable e.g. to magnetic rubbers and different magnetically coupled devices. Another potential application is protecting money and securities from counterfeiting.
Tien Hiep Nguyen et al, Impact of Iron on the Fe–Co–Ni Ternary Nanocomposites Structural and Magnetic Features Obtained via Chemical Precipitation Followed by Reduction Process for Various Magnetically Coupled Devices Applications, Nanomaterials (2021). DOI: 10.3390/nano11020341
https://phys.org/news/2021-03-scientists-magnetic-nanomaterial-coun...
Why sea slugs cut off their own headsAutotomy, the voluntary shedding of a body part, is common to distantly-related animals such as arthropods, gastropods, asteroids, amphibians, and lizards. Autotomy is generally followed by regeneration of shed terminal body parts, such as appendages or tails. A a new type of extreme autotomy ‘s reported recently. Two species of sea slug, Elysia marginata and Elysia atroviridis, decapitate themselves — only to regrow a new body from the severed head. Researchers were astonished to observe slugs in captivity cutting off their own heads after their bodies became infected with parasites. Within 3 weeks, the heads regenerate a whole, parasite-free body, though the bodies never grow back new heads. https://www.cell.com/current-biology/fulltext/S0960-9822(21)00047-6?utm_source=Nature+Briefing&utm_campaign=3d9abe9084-briefing-dy-20210309&utm_medium=email&utm_term=0_c9dfd39373-3d9abe9084-44672165
|
Researchers have demonstrated that a slimy, yet tough, type of biofilm that certain bacteria make for protection and to help them move around can also be used to separate water and oil. The material may be useful for applications such as cleaning contaminated waters.
They reported the findings of an experiment in which they used a material produced by the bacteria Gluconacetobacter hansenii as a filter to separate water from an oil mixture.
The biofilm the bacteria make and release into their environment is made of cellulose, which is the same material that gives plants a sturdy structure in their cell walls. However, when bacteria make cellulose, it has a tightly packed, crystalline structure. It's one of the purest, if not the purest, forms of cellulose out there. The bacteria make the film to protect themselves.
The material was effective at removing water, and it 's sturdy. The oil doesn't want to go through the membrane; it has a repulsive effect to it. It's super fat-hating.
Researchers see a variety of potential applications for the material in situations where you need to recover water from an oily mixture—whether it be to clean water contaminated with a textile dye or for environmental remediation.
Zahra Ashrafi et al. Bacterial Superoleophobic Fibrous Matrices: A Naturally Occurring Liquid-Infused System for Oil–Water Separation, Langmuir (2021). DOI: 10.1021/acs.langmuir.0c02717
https://phys.org/news/2021-03-bacterial-oil.html?utm_source=nwlette...
Researchers have come up with a better way to test which fabrics work best for masks that are meant to slow the spread of COVID-19. By testing those fabrics under conditions that mimic the humidity of a person's breath, the researchers have obtained measurements that more accurately reflect how the fabrics perform when worn by a living, breathing person.
The new measurements show that under humid conditions, the filtration efficiency—a measure of how well a material captures particles—increased by an average of 33% in cotton fabrics. Synthetic fabrics performed poorly relative to cotton, and their performance did not improve with humidity. The material from medical-procedure masks also did not improve with humidity, though it performed in roughly the same range as cottons.
The filtration efficiency of cotton fabrics increases in humid conditions because cotton is hydrophilic, meaning it likes water. By absorbing small amounts of the water in a person's breath, cotton fibers create a moist environment inside the fabric. As microscopic particles pass through, they absorb some of this moisture and grow larger, which makes them more likely to get trapped.
Most synthetic fabrics, on the other hand, are hydrophobic, meaning they dislike water. These fabrics do not absorb moisture, and their filtration efficiency does not change in humid conditions.
Christopher D. Zangmeister et al, Hydration of Hydrophilic Cloth Face Masks Enhances the Filtration of Nanoparticles, ACS Applied Nano Materials (2021). DOI: 10.1021/acsanm.0c03319
https://phys.org/news/2021-03-humidity-cotton-masks-effective-covid...
How to cut onions without crying using science
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!