Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 12 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 12 hours ago. 1 Reply 0 Likes
Q: Why are there so many "science communicators" so hostile against space colonization, transhumanism, posthumanism etc? And why do they say "science is not belief" for impose their scientific…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 15 hours ago. 1 Reply 0 Likes
How can a cell become cancerous? The ability of mutations to cause cancer depends on how fast they force cells to divide, researchers have found.The researchers have identified cell cycle length—the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Monday. 1 Reply 0 Likes
Q: Do you actually need to get high grades to be a scientist? People always talk about grasping the concept but that doesn't help people get good grades. Is it all just practice and hard…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Monday. 1 Reply 0 Likes
Imagine if a plant in a farmer's field could warn a grower that it needs water? Or if a farmer could signal to plants that dry weather lies ahead, thereby prompting the plants to conserve water?It…Continue
Comment
Consumer products such as food, cosmetics and clothes might be filled with nanomaterials, unbeknownst to us. The use of nanomaterials remains unregulated and they do not show up in lists of ingredients. This is a cause of concern since nanomaterials can be more dangerous than COVID-19 in the long term if no safety action is taken: They are tricky to measure, they enter the food chain, and most alarmingly, they can penetrate cells and accumulate in organs.
Thanks to applications of nanotechnology, many diseases could soon be eradicated; additionally, engineers are developing materials that are 100 times stronger than steel, batteries that last 10 times longer than before, solar panels that yield twice as much energy than old ones, advanced skin care products, and self-cleaning cars, windows and clothes.
Nanotechnology has the potential to become the next industrial revolution. The global market for nanomaterials is growing.
Yet, nanomaterials and their use in consumer products can be problematic. A new study published in Nature Communications recently sheds light on possible harms and what happens to them when they enter an organism. An international team of researchers developed a sensitive method to find and trace nanomaterials in blood and tissues, and traced nanomaterials across an aquatic food chain, from microorganisms to fish, a major source of food in many countries. This method can open new horizons for taking safety actions.
nanomaterials bind strongly to microorganisms, which are a source of food for other organisms, and this is the way they can enter our food chain. Once inside an organism, nanomaterials can change their shape and size and turn into a more dangerous material that can easily penetrate cells and spread to other organs. When looking at different organs of an organism, it was found that nanomaterials tend to accumulate especially in the brain.
According to the researchers, nanomaterials are also difficult to measure: Their levels in an organism cannot be measured only by using their mass, which is the standard method for measuring other chemicals for regulations. The findings emphasize the importance of assessing the risk of nanomaterials before they are introduced to consumer products in large amounts. A better understanding of nanomaterials and their risks can help policy makers to introduce stricter rules on their use and on the way they are listed in product ingredient labels.
It could be that you are already using nanomaterials in your food, clothes, cosmetic products, etc., but you still don't see any mention of them in the ingredient list. Why? Because they are still unregulated and because they are so small that we simply can't measure them once they're in products.
Particle number-based trophic transfer of gold nanomaterials in an aquatic food chain. Nature Communications (2021). doi.org/10.1038/s41467-021-21164-w
https://phys.org/news/2021-02-invisible-killer-lurking-consumer-pro...
New research from West Virginia University biologists shows that trees around the world are consuming more carbon dioxide than previously reported, making forests even more important in regulating the Earth's atmosphere and forever shift how we think about climate change.
In a study published in the Proceedings of the National Academy of Sciences, Professor Richard Thomas and alumnus Justin Mathias (BS Biology, '13 and Ph.D. Biology, '20) synthesized published tree ring studies. They found that increases in carbon dioxide in the atmosphere over the past century have caused an uptick in trees' water-use efficiency, the ratio of carbon dioxide taken up by photosynthesis to the water lost by transpiration—the act of trees "breathing out" water vapor.
We think of forests as providing ecosystem services. Those services can be a lot of different things—recreation, timber, industry. We demonstrate how forests perform another important service: acting as sinks for carbon dioxide. Our research shows that forests consume large amounts of carbon dioxide globally. Without that, more carbon dioxide would go into the air and build up in the atmosphere even more than it already is, which could exacerbate climate change. Our work shows yet another important reason to preserve and maintain our forests and keep them healthy."
Justin M. Mathias et al. Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO2 and modulated by climate and plant functional types, Proceedings of the National Academy of Sciences (2021). DOI: 10.1073/pnas.2014286118
https://phys.org/news/2021-02-biologists-uncover-forests-unexpected...
**
About half of our genome is made up of transposable elements (TEs), also known as transposons. These 'jumping genes' are short stretches of DNA that have the unique ability to duplicate themselves and change their position within our code. While these philanderings play an essential role in the evolution of the species, if unchecked, transposons can wreak havoc on the genome.
Although the transcription and proliferation of TEs is usually constrained by DNA methylation or other repressive chromatin amendments, TEs sometimes escape these countermeasures. For example, at certain periods of germ cell gametogenesis and early embryonic development, many epigenetic controls are wiped clean during scheduled system-wide reboots. Fortunately, cells have a backup mechanism known as the PIWI/piRNA pathway which can repress TEs. A recent paper in Nature Reviews Molecular Cell Biology investigates the many ways in which piRNAs can silence TEs, and defines new mechanisms by which they might also control gene expression.
Pei-Hsuan Wu et al. Defining the functions of PIWI-interacting RNAs, Nature Reviews Molecular Cell Biology (2021). DOI: 10.1038/s41580-021-00336-y
https://phys.org/news/2021-02-virally-derived-transposons-domestica...
Astronomers may have found our galaxy's first example of an unusual kind of stellar explosion. This discovery, made with NASA's Chandra X-ray Observatory, adds to the understanding of how some stars shatter and seed the universe with elements critical for life on Earth.
Glacier breaks in India's Himalayas linked to global warming
Indian rescue crews struggled to reach trapped victims Sunday after part of a glacier in the Himalayas broke off and released a torrent of water and debris that slammed into two hydroelectric plants. At least nine people were killed and 140 were missing in a disaster experts said appeared to point to global warming.
Video from India's northern state of Uttarakhand showed the muddy, concrete-gray floodwaters tumbling through a valley and surging into a dam, breaking it into pieces with little resistance before roaring on downstream. The flood turned the countryside into what looked like an ash-colored moonscape.
The flood was caused when a portion of Nanda Devi glacier snapped off in the morning, releasing water trapped behind it. It rushed down the mountain and into other bodies of water, forcing the evacuation of many villages along the banks of the Alaknanda and Dhauliganga rivers. A hydroelectric plant on the Alaknanda was destroyed, and a plant under construction on the Dhauliganga was damaged.
Scientists have long known that global warming is contributing to the melting and the breakup of the world's glaciers.Scientists have long known that global warming is contributing to the melting and the breakup of the world's glaciers. While data on the cause of the disaster was not yet available, "this looks very much like a climate change event as the glaciers are melting due to global warming”, according to experts.
https://phys.org/news/2021-02-glacier-india-himalayas.html?utm_sour...
Researchers have identified a new form of magnetism in so-called magnetic graphene, which could point the way toward understanding superconductivity in this unusual type of material.
They were able to control the conductivity and magnetism of iron thiophosphate (FePS3), a two-dimensional material which undergoes a transition from an insulator to a metal when compressed. This class of magnetic materials offers new routes to understanding the physics of new magnetic states and superconductivity.
Using new high-pressure techniques, the researchers have shown what happens to magnetic graphene during the transition from insulator to conductor and into its unconventional metallic state, realized only under ultra-high pressure conditions. When the material becomes metallic, it remains magnetic, which is contrary to previous results and provides clues as to how the electrical conduction in the metallic phase works. The newly discovered high-pressure magnetic phase likely forms a precursor to superconductivity so understanding its mechanisms is vital.
Their results, published in the journal Physical Review X, also suggest a way that new materials could be engineered to have combined conduction and magnetic properties, which could be useful in the development of new technologies such as spintronics, which could transform the way in which computers process information.
Matthew J. Coak et al. 'Emergent Magnetic Phases in Pressure-Tuned van der Waals Antiferromagnet FePS3.' Physical Review X (2021). DOI: 10.1103/PhysRevX.11.011024
https://phys.org/news/2021-02-magnetic-graphene-kind-magnetism.html...
How rocks rusted on Earth and turned red
How did rocks rust on Earth and turn red in some areas? A study has shed new light on the important phenomenon and will help address questions about the Late Triassic climate more than 200 million years ago, when greenhouse gas levels were high enough to be a model for what our planet may be like in the future.
All of the red color we see in rocks in some parts of the globe is due to the natural mineral hematite. As far as we know, there are only a few places where this red hematite phenomenon is very widespread: one being the geologic 'red beds' on Earth and another is the surface of Mars. this new study takes a significant step forward toward understanding how long it takes for redness to form, the chemical reactions involved and the role hematite plays.
The hematite is indeed old and probably resulted from the interactions between the ancient soils and climate change.
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!