Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 1 hour ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 1 hour ago. 4 Replies 0 Likes
Oh, we have been celebrating Deepavali with fun and happiness minus fireworks for the past several years!Before somebody asks me 'How can there be fun without fireworks?', I want to add I had fun…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 2 hours ago. 14 Replies 0 Likes
Headlines in the media screaming: Humans dump 8 million tonnes of plastics into the oceans each year. That's five grocery bags of plastic for every foot of coastline in the world.Plastic, plastic,…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 2 hours ago. 2 Replies 0 Likes
Q: Why do bats spread so many diseases? Let us start with positive things. In reality, bats are truly remarkable.Bats support our agricultural industries as vital members of food webs. Bats…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply 0 Likes
Mathematical proof debunks the idea that the universe is a computer simulationDidn’t know how to disprove this, but I always wanted to: It's a plot device beloved by science fiction - our entire…Continue
Comment
Virtually all the energy in the Earth's climate system comes from the sun. Only a tiny fraction is conducted upward from the Earth's interior.
On average, the planet receives 340.4 watts of sunshine per square meter. All sunshine falls on the daytime side, and the numbers are much higher at local noon.
Of that 340.4 watts per square meter:
99.9 watts are reflected back into space by clouds, dust, snow and the Earth's surface.
The remaining 240.5 watts are absorbed—about a quarter by the atmosphere and the rest by the surface of the planet. This radiation is transformed into thermal energy within the Earth system. Almost all of this absorbed energy is matched by energy emitted back into space. A tiny residual—0.6 watts per square meter—accumulates as global warming. That may not sound like much, but it adds up.
The atmosphere absorbs a lot of energy and emits it as radiation both into space and back down to the planet's surface. In fact, Earth's surface gets almost twice as much radiation from the atmosphere as it does from direct sunshine. That's primarily because the sun heats the surface only during the day, while the warm atmosphere is up there 24/7.
part 2
Energy can neither be created nor destroyed. That's a fundamental property of the universe.
Energy can be transformed, however. When the sun's rays reach Earth, they are transformed into random motions of molecules that you feel as heat. At the same time, Earth and the atmosphere are sending radiation back into space. The balance between the incoming and outgoing energy is known as Earth's "energy budget."
Our climate is determined by these energy flows. When the amount of energy coming in is more than the energy going out, the planet warms up.
That can happen in a few ways, such as when sea ice that normally reflects solar radiation back into space disappears and the dark ocean absorbs that energy instead. It also happens when greenhouse gases build up in the atmosphere and trap some of the energy that otherwise would have radiated away.
part 1
All senses must reckon with the richness of the world, but nothing matches the challenge faced by the olfactory system that underlies our sense of smell. We need only three receptors in our eyes to sense all the colors of the rainbow—that's because different hues emerge as light-waves that vary across just one dimension, their frequency. The vibrant colorful world, however, pales in comparison to the complexity of the chemical world, with its many millions of odors, each composed of hundreds of molecules, all varying greatly in shape, size and properties. The smell of coffee, for instance, emerges from a combination of more than 200 chemical components, each of which are structurally diverse, and none of which actually smells like coffee on its own.
To form a basic understanding of odorant recognition we need to know how a single receptor can recognize multiple different chemicals, which is a key feature of how the olfactory system works
The olfactory system has to recognize a vast number of molecules with only a few hundred odour receptors or even less. It's clear that it had to evolve a different kind of logic than other sensory systems.
In a new study researchers offer answers to the decades-old question of odour recognition by providing the first-ever molecular views of an olfactory receptor at work.
The findings, published in Nature, reveal that olfactory receptors indeed follow a logic rarely seen in other receptors of the nervous system. While most receptors are precisely shaped to pair with only a few select molecules in a lock-and-key fashion, most olfactory receptors each bind to a large number of different molecules. Their promiscuity in pairing with a variety of odors allows each receptor to respond to many chemical components. From there, the brain can figure out the odor by considering the activation pattern of combinations of receptors.
The structural basis of odorant recognition in insect olfactory receptors, Nature (2021). DOI: 10.1038/s41586-021-03794-8 , www.nature.com/articles/s41586-021-03794-8
https://phys.org/news/2021-08-reveals-receptors.html?utm_source=nwl...
Driverless Tractor: India’s Innovation
Cryptic transcription in mammalian stem cells linked to aging
Although visible signs of aging are usually unmistakable, unraveling what triggers them has been quite a challenge. Researchers have discovered that a cellular phenomenon called cryptic transcription, which had been previously described and linked to aging in yeasts and worms, is elevated in aging mammalian stem cells.
Researchers report in the journal Nature Aging that cryptic transcription occurs because a cellular mechanism that keeps it in check falls apart as cells get old. The findings suggest that strategies that control cryptic transcription could have pro-longevity effects.
In previous work, they showed that cryptic transcription in yeasts and worms is not only a marker of aging but also a cause. Reducing the amount of this aberrant transcription in these organisms prolonged their lifespan.
Cryptic transcription is a phenomenon that interferes with normal cellular processes. Normal gene transcription is a first step in the production of proteins. It begins in a specific location on the DNA called the promoter. This is where the protein coding gene begins to be transcribed into RNA, which is eventually translated into protein. Gene transcription is a well-regulated cellular process, but as cells age, they lose their ability to control it.
Promoters have a specific DNA sequence that identifies the starting point of the transcription process that is usually located preceding the actual protein coding sequence.
But promoter look-alike sequences do exist in other locations, including along the actual protein coding sequence, and they could start transcription and generate shorter transcripts, called cryptic transcripts.
worked with mammalian stem cells, which have shown to play a significant role in aging. They adapted a method to detect cryptic transcription to determine the level of this transcription in mice and human stem cells and cultured cells. When compared to young stem cells, older ones had increased cryptic transcription. They also looked into other aging cells and found that, in the majority of cells spanning a range of tissues, cryptic transcription was also elevated with age.
Altogether, these findings indicate that elevated cryptic transcription is a hallmark of mammalian aging. Young cells have mechanisms in place to prevent cryptic transcription. In aged mammalian cells, the researchers found that one such mechanisms, which involves limiting the access to chromatin, the material that makes up the chromosomes, is failing, facilitating the production of cryptic transcripts.
https://www.nature.com/articles/s43587-021-00091-x
https://researchnews.cc/news/8148/Cryptic-transcription-in-mammalia...
Hundreds of thousands of people around the world die too soon every year because of exposure to air pollution caused by our daily use of chemical products and fuels, including paints, pesticides, charcoal and gases from vehicle tailpipes, according to a new study.
Researchers calculated that air pollution caused by "anthropogenic secondary organic aerosol" causes 340,000-900,000 premature deaths. Those are tiny particles in the atmosphere that form from chemicals emitted by human activities.
The older idea was that to reduce premature mortality, you should target coal-fired power plants or the transportation sector. Yes, these are important, but this study is showing that if you're not getting at the cleaning and painting products and other everyday chemicals, then you're not getting at a major source.
Atmospheric researchers have long understood that particles in the atmosphere small enough to be inhaled can damage people's lungs and increase mortality. Studies have estimated that fine particle pollution, often called PM2.5, leads to 3-4 million premature deaths globally per year, possibly more.
The new work suggests that a third broad category of chemicals—anthropogenic secondary organic pollutants—is a significant indirect source of deadly fine particles.
Benjamin A. Nault et al, Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality, Atmospheric Chemistry and Physics (2021). DOI: 10.5194/acp-21-11201-2021
https://phys.org/news/2021-08-particles-pesticides-deadly-impact.ht...
A research team studied the behavior of a protein called HEI10 which plays an integral role in crossover formation in meiosis. Super-resolution microscopy revealed that HEI10 proteins cluster along chromosomes, initially forming lots of small groups. However, as time passes, the HEI10 proteins concentrate in only a small number of much larger clusters which, once they reach a critical mass, can trigger crossover formation.
These measurements were then compared against a mathematical model which simulates this clustering, based on diffusion of the HEI10 molecules and simple rules for their clustering. The mathematical model was capable of explaining and predicting many experimental observations, including that crossover frequency could be reliably modified by simply altering the amount HEI10.
This study shows that data from super-resolution images of Arabidopsis reproductive cells is consistent with a mathematical 'diffusion-mediated coarsening' model for crossover patterning in Arabidopsis. The model helps us understand the patterning of crossovers along meiotic chromosomes.
Diffusion-mediated HEI10 coarsening can explain meiotic crossover positioning in Arabidopsis" appears in Nature Communications.
Diffusion-mediated HEI10 coarsening can explain meiotic crossover positioning in Arabidopsis, Nature Communications (2021). DOI: 10.1038/s41467-021-24827-w
https://phys.org/news/2021-08-sex-cells-genetic-interdisciplinary-a...
In a new study scientists have found that microbial genetic pathways are different in people suffering from hypertension.
The research also found that those with hypertension also have a deficiency in a newly identified target gene that senses gut microbiota-derived metabolites that lower BP.
If left untreated, hypertension, also referred to as high BP, can lead to stroke and, myocardial infarction, the main causes of death globally. Long-term, hypertension causes a stiffening of the arteries and the muscles of the heart, leading to heart failure. This is important as the research team also found in another recently published study that patients with heart failure, for which hypertension is a major risk factor, have a distinct gut microbiome composition.
The research team assessed human gut microbiota in the setting of high blood-pressure levels and heart failure to better understand the complex nature of these diseases. Changes in gut microbiome were particularly associated with bacteria that are known to produce short-chain fatty acids, substances their team has previously shown to ameliorate blood pressure and heart disease in mice.
The researchers found that the gut microbiome was mostly similar between normotensive and essential hypertensive groups, but the gut microbial gene pathways were different, suggesting major differences in the function of the microbiota.
They also found that hypertensive subjects have a deficiency in a new target gene that senses gut microbiota derived metabolites that lower blood pressure.
Michael Nakai et al, Essential Hypertension Is Associated With Changes in Gut Microbial Metabolic Pathways, Hypertension (2021). DOI: 10.1161/HYPERTENSIONAHA.121.17288
Anna L. Beale et al, The Gut Microbiome of Heart Failure With Preserved Ejection Fraction, Journal of the American Heart Association (2021). DOI: 10.1161/JAHA.120.020654
https://medicalxpress.com/news/2021-08-deficiency-gut-microbiome-pr...
A wide range of factors—from obesity to hormonal imbalances to genetic diseases—can affect fertility. For many men, there are treatments that can help. But starting in the 1990s, researchers noticed a concerning trend. Even when controlling for many of the known risk factors, male fertility appeared to have been declining for decades. In 1992, a study found a global 50% decline in sperm counts in men over the previous 60 years. Multiple studies over subsequent years confirmed that initial finding, including a 2017 paper showing a 50% to 60% decline in sperm concentration between 1973 and 2011 in men from around the world. The science is consistent: Men today produce fewer sperm than in the past, and the sperm are less healthy. The question, then, is what could be causing this decline in fertility. Scientists have known for years that, at least in animal models, environmental toxic exposure can alter hormonal balance and throw off reproduction. Researchers can't intentionally expose human patients to harmful compounds and measure outcomes, but we can try to assess associations. As the downward trend in male fertility emerged, I and other researchers began looking more toward chemicals in the environment for answers. This approach doesn't allow us to definitively establish which chemicals are causing the male fertility decline, but the weight of the evidence is growing. A lot of this research focuses on endocrine disrupters, molecules that mimic the body's hormones and throw off the fragile hormonal balance of reproduction. These include substances like phthalates—better known as plasticizers—as well as pesticides, herbicides, heavy metals, toxic gases and other synthetic materials. Plasticizers are found in most plastics—like water bottles and food containers—and exposure is associated with negative impacts on testosterone and semen health.Herbicides and pesticides abound in the food supply and some—specifically those with synthetic organic compounds that include phosphorus—are known to negatively affect fertility. Air pollution surrounds cities, subjecting residents to particulate matter, sulfur dioxide, nitrogen oxide and other compounds that likely contribute to abnormal sperm quality. Radiation exposure from laptops, cellphones and modems has also been associated with declining sperm counts, impaired sperm motility and abnormal sperm shape. Heavy metals such as cadmium, lead and arsenic are also present in food, water and cosmetics and are also known to harm sperm health. Endocrine-disrupting compounds and the infertility problems they cause are taking a significant toll on human physical and emotional health. And treating these harms is costly.
https://theconversation.com/male-fertility-is-declining-studies-sho...
https://medicalxpress.com/news/2021-08-male-fertility-declining-env...
**
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!