Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 9 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 9 hours ago. 1 Reply 0 Likes
Q: Is it a fact that cancer is also genetically inherited? If so, how much percentage of cancer affected patients have genetically inherited cancer? K: While most cancers are not directly inherited,…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 12 hours ago. 1 Reply 0 Likes
Q: What are wet bulb and dry bulb temperatures?Krishna: Dry bulb temperature is the temperature of the air as measured by a standard thermometer, while wet bulb temperature is the temperature…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 12 Replies 0 Likes
Recent measles outbreak in the California state of the US ( now spread to other states too) tells an interesting story.Vaccines are not responsible for the woes people face but because of rejection…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Q: What is the definition of subjective reality? What is the definition of objective reality?Krishna: A person asked me this question sometime back:Why does our thinking differ so much? We are from…Continue
Comment
Researchers identify off switch for alcoholism
A study led by the Monash Institute of Pharmaceutical Sciences and the Florey Institute of Neuroscience and Mental Health uncovered a potential therapeutic target to treat alcohol use disorder (AUD) by targeting a specific receptor in the brain. The researchers found that by targeting the muscarinic M4 receptor in the brain, both habitual drinking and the likelihood to relapse could be improved in those suffering from alcohol addiction.
The team performed genome-wide RNA sequencing and protein expression studies in human tissue samples from people with AUD and non-drinkers to identify potential therapeutic targets.
https://www.monash.edu/pharm/about/news/news-listing/2020/researche...
https://researchnews.cc/news/5598/Researchers-identify-off-switch-f...
A pioneering study led by University of Saskatchewan (USask) veterinary ophthalmologist Dr. Marina Leis (DVM, DACVO) shows that bacterial communities vary on different parts of the eye surface—a finding that significantly alters understanding of the mechanisms of eye disease and can lead to developing new treatments.
A new study by researchers found that DNA from tissue samples can be used to accurately predict the age of bats in the wild. The study also showed age-related changes to the DNA of long-lived species are different from those in short-lived species, especially in regions of the genome near genes associated with cancer and immunity. This work provides new insight into causes of age-related declines.
This is the first research paper to show that animals in the wild can be accurately aged using an epigenetic clock, which predicts age based on specific changes to DNA. This work provides a new tool for biologists studying animals in the wild. In addition, the results provide insight into possible mechanisms behind the exceptional longevity of many bat species. The study appears in the March 12, 2021, issue of the journal Nature Communications.
The researchers looked at DNA from 712 bats of known age, representing 26 species, to find changes in DNA methylation at sites in the genome known to be associated with aging. DNA methylation is a process that switches genes off. It occurs throughout development and is an important regulator for cells. Overall, methylation tends to decrease throughout the genome with age. Using machine learning to find patterns in the data, the researchers found that they could estimate a bat's age to within a year based on changes in methylation at 160 sites in the genome. The data also revealed that very long-lived bat species exhibit less change in methylation overall as they age than shorter-lived bats.
https://www.sciencedaily.com/releases/2021/03/210312095814.htm#:~:t....
https://phys.org/news/2021-03-accurate-aging-wild-animals-epigeneti...
blackhole movement - 2
We may be observing the aftermath of two supermassive black holes merging. The result of such a merger can cause the newborn black hole to recoil, and we may be watching it in the act of recoiling or as it settles down again.
But there's another, perhaps even more exciting possibility: the black hole may be part of a binary system.
Further observations, however, will ultimately be needed to pin down the true cause of this supermassive black hole's unusual motion.
Dominic W. Pesce et al, A Restless Supermassive Black Hole in the Galaxy J0437+2456, The Astrophysical Journal (2021). DOI: 10.3847/1538-4357/abde3d
https://phys.org/news/2021-03-astronomers-black-hole.html?utm_sourc...
Scientists have long theorized that supermassive black holes can wander through space—but catching them in the act has proven difficult. Now, researchers at the Center for Astrophysics | Harvard & Smithsonian have identified the clearest case to date of a supermassive black hole in motion. Their results are published today in the Astrophysical Journal.
We don't expect the majority of supermassive black holes to be moving; they're usually content to just sit around. They're just so heavy that it's tough to get them going. Consider how much more difficult it is to kick a bowling ball into motion than it is to kick a soccer ball—realizing that in this case, the 'bowling ball' is several million times the mass of our Sun. That's going to require a pretty mighty kick.
Usually the velocities of the black holes the same as the velocities of the galaxies they reside in. We expect them to have the same velocity. If they don't, that implies the black hole has been disturbed.
For their search, the team initially surveyed 10 distant galaxies and the supermassive black holes at their cores. They specifically studied black holes that contained water within their accretion disks—the spiral structures that spin inward towards the black hole.
As the water orbits around the black hole, it produces a laser-like beam of radio light known as a maser. When studied with a combined network of radio antennas using a technique known as very long baseline interferometry (VLBI), masers can help measure a black hole's velocity very precisely.
The technique helped the team determine that nine of the 10 supermassive black holes were at rest—but one stood out and seemed to be in motion.
Located 230 million light-years away from Earth, the black hole sits at the center of a galaxy named J0437+2456. Its mass is about three million times that of our Sun.
Using follow-up observations with the Arecibo and Gemini Observatories, the team has now confirmed their initial findings. The supermassive black hole is moving with a speed of about 110,000 miles per hour inside the galaxy J0437+2456.
But what's causing the motion is not known. The team suspects there are two possibilities.
Quantum physics is all around us. The universe as we know it runs on quantum rules, and while the classical physics that emerges when you apply quantum physics to enormously huge numbers of particles seem very different, there are lots of familiar, everyday phenomena that owe their existence to quantum effects. Here are a few examples of things you probably run into in your everyday life without realizing that they're quantum:
Toasters: The red glow of a heating element as you toast a slice of bread or a bagel is a very familiar sight for most of us. It's also the place where quantum physics got its start: Explaining why hot objects glow that particular color of red is the problem that quantum physics was invented to solve.
"quantum hypothesis" (giving the eventual theory its name) that the light could only be emitted in discrete chunks of energy, integer multiples of a small constant times the frequency of the light. For high-frequency light, this energy quantum is larger than the share of heat energy allotted to that frequency, and thus no light is emitted at that frequency. This cuts off the high-frequency light, and leads to a formula that matches the observed spectrum of light from hot objects to great precision.
So, every time you toast bread, you're looking at the place where quantum physics got its start.
Fluorescent Lights: Old-school incandescent light bulbs make light by getting a piece of wire hot enough to emit a bright white glow, which makes them quantum in the same way that a toaster is. If you have fluorescent bulbs around-- either the long tubes or the newer twisty CFL bulbs, you're getting light from another revolutionary quantum process.
Computers: While Bohr's quantum model was undeniably useful, it didn't initially come with a physical reason as to why there should be special states for electrons within atoms. That didn't come for almost ten years, but once the idea got locked it, it turned out to be the basis for the most transformative technological revolution of the last century.
So, every time you turn on your computer (say, to read a blog post about quantum physics), you're exploiting the wave nature of electrons, and the unprecedented control of materials that allows. It may not be the sexy kind of quantum computer, but every modern computer needs quantum physics to work properly.
https://www.forbes.com/sites/chadorzel/2018/12/04/three-ways-quantu...
**
I ain't afraid of no ghosts: people with mind-blindness not so easily spooked
People with aphantasia – that is, the inability to visualise mental images – are harder to spook with scary stories, a new UNSW Sydney study shows.
The study, published today in Proceedings of the Royal Society B, tested how aphantasic people reacted to reading distressing scenarios, like being chased by a shark, falling off a cliff, or being in a plane that’s about to crash.
The researchers were able to physically measure each participant’s fear response by monitoring changing skin conductivity levels – in other words, how much the story made a person sweat. This type of test is commonly used in psychology research to measure the body’s physical expression of emotion.
According to the findings, scary stories lost their fear factor when the readers couldn’t visually imagine the scene – suggesting imagery may have a closer link to emotions than scientists previously thought.
Researchers found the strongest evidence yet that mental imagery plays a key role in linking thoughts and emotions.
Aphantasia affects 2-5 per cent of the population, but there is still very little known about the condition.
A UNSW study published last year found that aphantasia is linked to a widespread pattern of changes to other cognitive processes, like remembering, dreaming and imagining.
https://royalsocietypublishing.org/doi/10.1098/rspb.2021.0267
https://researchnews.cc/news/5578/I-ain-t-afraid-of-no-ghosts--peop...
Sonolithography is based on the application of acoustic radiation forces arising from the interference of ultrasonic standing waves to direct airborne particle/droplet accumulation. Sonolithography is capable of rapidly patterning micrometer to millimeter scale materials onto a wide variety of substrates over a macroscale (cm2) surface area and can be used for both indirect and direct cell patterning.
Membrane around tumors may be key to preventing metastasis
For cancer cells to metastasize, they must first break free of a tumors own defenses. Most tumors are sheathed in a protective basement membrane a thin, pliable film that holds cancer cells in place as they grow and divide. Before spreading to other parts of the body, the cells must breach the basement membrane, a material that itself has been tricky for scientists to characterize. Now MIT engineers have probed the basement membrane of breast cancer tumors and found that the seemingly delicate coating is as tough as plastic wrap, yet surprisingly elastic like a party balloon, able to inflate to twice its original size. But while a balloon becomes much easier to blow up after some initial effort, the team found that a basement membrane becomes stiffer as it expands. This stiff yet elastic quality may help basement membranes control how tumors grow.
The fact that the membranes appear to stiffen as they expand suggests that they may restrain a tumor’s growth and potential to spread, or metastasize, at least to a certain extent.
The findings, published this week in the Proceedings of the National Academy of Sciences, may open a new route toward preventing tumor metastasis, which is the most common cause of cancer-related deaths.
Now scientists can think of ways to add new materials or drugs to further enhance this stiffening effect, and increase the toughness of the membrane to prevent cancer cells from breaking through
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!