Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 9 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 11 hours ago. 1 Reply 0 Likes
Claims that portable electric heaters can heat homes for pennies or rapidly warm entire houses are not supported by physics. All electric heaters are nearly 100% efficient, meaning almost all input electricity becomes heat, but this does not make…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Q: What is superkilonova?Krishna: A superkilonova…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
If you've ever watched a batter get beaten by a ball that curved, jagged or dipped at the last moment, you've seen one of cricket's great mysteries.Whether it's a Mitchell Starc inswinger, a Josh Hazlewood delivery that nips off the seam, or a…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
You trust the road beneath your tires. But what if that trust is misplaced? Sinkholes are increasingly turning ordinary streets into danger zones. And the cost of ignoring them is skyrocketing.Each year, sinkholes swallow roads, homes and businesses…Continue
Comment
A hair-like protein hidden inside bacteria serves as a sort of on-off switch for nature's "electric grid," a global web of bacteria-generated nanowires that permeates all oxygen-less soil and deep ocean beds, researchers report in the journal Nature.
The ground beneath our feet, the entire globe, is electrically wired. These previously hidden bacterial hairs are the molecular switch controlling the release of nanowires that make up nature's electrical grid.
Almost all living things breathe oxygen to get rid of excess electrons when converting nutrients into energy. Without access to oxygen, however, soil bacteria living deep under oceans or buried underground over billions of years have developed a way to respire by "breathing minerals," like snorkeling, through tiny protein filaments called nanowires.
Scientists had thought that the nanowires are made up of a protein called "pili" ("hair" in Latin) that many bacteria show on their surface. This work has reveal that this pili structure is made up of two proteins And instead of serving as nanowires themselves, pili remain hidden inside the bacteria and act like pistons, thrusting the nanowires into the environment. Previously nobody had suspected such a structure.
Just how these soil bacteria use nanowires to exhale electricity, however, has remained a mystery. Now that mystery has been solved.
Understanding how bacteria create nanowires will allow scientists to tailor bacteria to perform a host of functions—from combatting pathogenic infections or biohazard waste to creating living electrical circuits, the authors say. It will also assist scientists seeking to use bacteria to generate electricity, create biofuels, and even develop self-repairing electronics.
Structure of Geobacter pili reveals secretory rather than nanowire behaviour, Nature (2021). DOI: 10.1038/s41586-021-03857-w , www.nature.com/articles/s41586-021-03857-w
https://phys.org/news/2021-09-hidden-bacterial-hairs-power-nature.h...
Have you ever met someone you instantly liked, or at other times, someone who you knew immediately that you did not want to be friends with, although you did not know why?
Some people speculated that "unconscious" part of the brain enables us to process information spontaneously, when, for example, meeting someone for the first time, interviewing someone for a job, or faced with making a decision quickly under stress.
Now, a new study from the University of Maryland School of Medicine (UMSOM) suggests that there may be a biological basis behind this instantaneous compatibility reaction. A team of researchers showed that variations of an enzyme found in a part of the brain that regulates mood and motivation seems to control which mice want to socially interact with other mice—with the genetically similar mice preferring each other.
These findings may indicate that similar factors could contribute to the social choices people make. Understanding what factors drive these social preferences may help us to better recognize what goes awry in diseases associated with social withdrawal, such as schizophrenia or autism, so that better therapies can be developed.
The study was published on July 28 in Molecular Psychiatry, a Nature publication.
But, let us wait till these results are reproduced several times before coming to a conclusion.
Abigail J. Smith et al, A genetic basis for friendship? Homophily for membrane-associated PDE11A-cAMP-CREB signaling in CA1 of hippocampus dictates mutual social preference in male and female mice, Molecular Psychiatry (2021). DOI: 10.1038/s41380-021-01237-4
https://medicalxpress.com/news/2021-09-genetics-friends-mice.html?u...
A newly discovered gene mutation linked to early onset Alzheimer's disease has been discovered by an international team of scientists, who traced the DNA flaw through multiple members of a single family.
Alzheimer's has long been known as a mind-robbing disease that that wipes out memories and destroys one's sense of self. Most cases of arise sporadically, emerging after age of 65—transmuting one's golden years into a nightmare marked by an incurable brain disease.
Aside from Alzheimer's dementia that begins sporadically in old age, are insidious familial forms that begin years to decades earlier. Early onset refers Alzheimer's that begins before age 65.
Now, an international team of scientists—led by neurobiologists in Sweden—have identified an extraordinarily rare form of the disease that so far has been found only in one family. This form of Alzheimer's is aggressive, rapid and steals its victims' most productive years along their cognitive functions.
Researchers in Sweden have named this form of Alzheimer's—the Uppsala APP deletion—after the family that's endowed with this notorious DNA miscue. It invariably causes descent into dementia at a young age.
Affected individuals have an age at symptom onset in their early forties, and suffer from a rapidly progressing disease course.
Researchers found that the mutation accelerates the formation of brain-damaging protein plaques, known as amyloid beta, or more simply as Aβ. The gooey plaques destroy neurons and, as a result, annihilate the executive functions of the brain itself. Neuroscientists basically define executive functions as working memory, mental flexibility and self control.
María Pagnon de la Vega et al, The Uppsala APP deletion causes early onset autosomal dominant Alzheimer's disease by altering APP processing and increasing amyloid β fibril formation, Science Translational Medicine (2021). DOI: 10.1126/scitranslmed.abc6184
https://medicalxpress.com/news/2021-09-scientists-sweden-rare-aggre...

The team was particularly interested in the role of sugar molecules on the spike protein, which are called glycans. To see whether the number, type and position of glycans play a role in the membrane fusion stage of viral cell entry by mediating these intermediate spike formations, they performed thousands of simulations using an all-atom structure-based model. Such models allow prediction of the trajectory of atoms over time, taking into account steric forces—that is, how neighboring atoms affect the movement of others.
The simulations revealed that glycans form a "cage" that traps the "head" of the S2 subunit, causing it to pause in an intermediate form between when it detaches from the S1 subunit and when the viral and cell membranes are fused. When the glycans were not there, the S2 subunit spent much less time in this conformation.
The simulations also suggest that holding the S2 head in a particular position helps the S2 subunit recruit human host cells and fuse with their membranes, by allowing the extension of short proteins called fusion peptides from the virus. Indeed, glycosylation of S2 significantly increased the likelihood that a fusion peptide would extend to the host cell membrane, whereas when glycans were absent, there was only a marginal possibility that this would occur.
simulations indicate that glycans can induce a pause during the spike protein transition. This provides a critical opportunity for the fusion peptides to capture the host cell.
In the absence of glycans, the viral particle would likely fail to enter the host. Our study reveals how sugars can control infectivity, and it provides a foundation for experimentally investigating factors that influence the dynamics of this pervasive and deadly pathogen.
Esteban Dodero-Rojas et al, Sterically confined rearrangements of SARS-CoV-2 Spike protein control cell invasion, eLife (2021). DOI: 10.7554/eLife.70362
https://phys.org/news/2021-08-sars-cov-dynamics-reveals-opportunity...
part 2 **
Scientists have simulated the transition of the SARS-CoV-2 spike protein structure from when it recognizes the host cell to when it gains entry, according to a study published today in eLife.
The research shows that a structure enabled by sugar molecules on the spike protein could be essential for cell entry and that disrupting this structure could be a strategy to halt virus transmission.Cadherins need calcium ions to complete their connections, so Shim grew the cells with different amounts of calcium and measured their response to electrical stimulation. She saw that the less calcium the cells had, the more fluid they became and the quicker they moved. "It goes really fast.
Calcium has many effects on living tissues, however, so Shim had to confirm that the handshakes were to blame for the slow movement. She grew cells with an antibody that attaches to cadherins. With blocked handshakes, these cells moved more quickly.
After working out the ground rules of cell adhesiveness, the researchers developed a solution to their sticky cell problem. Shim grew a layer of skin cells in a high calcium solution so they made their normal connections. Then she treated the cells with a chemical that grabs up calcium ions to break up the cellular handshakes. When Shim lowered the calcium level and applied the electric field, the cells moved on command. Finally, she restored the high calcium level to reinstate the handshakes, resulting in a healthy and cohesive layer of skin cells.
To demonstrate that this approach has the potential to accelerate healing, Shim performed the above experiment using an electrobioreactor developed in the Cohen lab that mimics the closing of a wound. Unlike other models of electrotaxis where the electric field moves cells in one direction, their new system exposes cells to an electric field focused on the center of the injury. Shim showed that the stimulated tissues successfully came together while the unstimulated ones remained largely separate. Cohen's group described their electrobioreactor in a new paper in Biosensors and Bioelectronics.
part3
In their previous work, Cohen's group used electric fields to program thousands of individual cells to move in circles and around corners. Their new study used a model of more mature skin—a single layer of mouse skin cells all latched together—which is harder to control. Instead of moving with the speed and precision of a marching band in response to an electric current, the mature skin cells inched along like a crowd of people holding hands with their neighbors.
The mature skin also posed another problem: Once the leading edge of cells advanced, it would peel away from the petri dish and die. "If you apply a command that differs from what the cells naturally 'want' to do, you get a tug-of-war. The result was the tissues ripped themselves apart.
Cohen and Shim suspected that the "handshakes" between cells prevented the tissue from fluidly following the electrical commands. These handshakes are proteins called cadherins that anchor neighboring cells together. They make tissues cohesive so they can move together but can also create traffic jams when cells don't have space to move.
Gawoon Shim et al, Overriding native cell coordination enhances external programming of collective cell migration, Proceedings of the National Academy of Sciences (2021). DOI: 10.1073/pnas.2101352118
https://phys.org/news/2021-08-cellular-motion-wound.html?utm_source...
part 2
With a technique that overcomes cells' innate social behaviors, researchers have taken an important step in directing skin cells to migrate en masse to close wounds—"literally making skin crawl".
In a new study, the researchers overcame the inertia typical of mature skin tissue by breaking the molecular connections between cells, applying an electrical field to direct their migration and then rebuilding the connections. This novel approach improves the controllability of tissues and may one day help optimize wound healing through electrical stimulation.
Research showed that cells in the body can sense and follow an electric field, a process called electrotaxis. Electric fields generated in the body promote healing by directing cells to move toward the wound and are also vital for growth and development.
Despite promising clinical evidence from decades of use in patients, scientists have yet to work out how cells detect and respond to electric fields or how electrical stimulation can best be applied therapeutically. "It's kind of a black box
Gawoon Shim et al, Overriding native cell coordination enhances external programming of collective cell migration, Proceedings of the National Academy of Sciences (2021). DOI: 10.1073/pnas.2101352118
part1
In modern organisms, the hereditary material DNA encodes the instructions for the synthesis of proteins—the versatile nanomachines that enable modern cells to function and replicate. But how was this functional linkage between DNA and proteins established? According to the "RNA world" hypothesis, primordial living systems were based on self-replicating RNA molecules. Chemically speaking, RNA is closely related to DNA. However, in addition to storing information, RNA can fold into complex structures that have catalytic activity, similar to the protein nanomachines that catalyze chemical reactions in cells. These properties suggest that RNA molecules should be capable of catalyzing the replication of other RNA strands, and initiating self-sustaining evolutionary processes. Hence, RNA is of particular interest in the context of the origin of life as a promising candidate for the first functional biopolymer.
--
Public health is coming under increasing pressure worldwide due to the antibiotic crisis: the rapid increase in resistance of bacterial pathogens could mean that in the near future bacterial infections that are usually harmless will be difficult or impossible to treat. The spread of antibiotic resistance is based on the ability of pathogens to adapt quickly to the drugs. In principle, evolutionary theory assumes that this adaptation is more difficult when environmental conditions change rapidly. Sequential antibiotic therapy, which involves switching between different antibiotics in a short time, could therefore lead to a reduction in the spread of resistance. This therapeutic approach is usually not considered in medical treatment and is also hardly investigated in basic research—despite the possible long-term benefits.
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!