Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 13 seconds ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 13 seconds ago. 1 Reply 0 Likes
This is what experts advice....From a barbecue explosion to a severe firework injury, a lot can go wrong when celebrating.When it does, minutes—even seconds—can significantly impact the extent of the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 11 minutes ago. 18 Replies 2 Likes
What might happen when you take lots of medicines...One of our uncles died of liver cirrhosis ten years back. He never touched alcohol in his life. He didn't have any viral infection to cause this.…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Sunday. 1 Reply 0 Likes
Q: How Big is the universe?Krishna: The total size of the universe is not known, and some scientists think it could be many times larger than the observable portion. For example, one hypothesis…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Saturday. 1 Reply 0 Likes
Q: Why do some people commit crimes? What does science say about it?Krishna: It is easy to blame people. But did you know that the way your brain wires or rewires because of different situations it…Continue
Comment
Some of the planet's rarest metals—used in the manufacture of smartphones and other electrical equipment—are increasingly being found in everyday consumer plastics, according to new research.
Scientists
tested a range of new and used products including children's toys, office equipment and cosmetic containers.
Through a number of detailed assessments, they examined levels of rare earth elements (REEs) but also quantities of bromine and antimony, used as flame retardants in electrical equipment and a sign of the presence of recycled electronic plastic.
The results showed one or more REEs were found in 24 of the 31 products tested, including items where unregulated recycling is prohibited such as single-use food packaging.
They were most commonly observed in samples containing bromine and antimony at levels insufficient to effect flame retardancy, but also found in plastics where those chemicals weren't present.
Having also been found in beached marine plastics, the study's authors have suggested there is evidence that REEs are ubiquitous and pervasive contaminants of both contemporary and historical consumer and environmental plastics.
While they have previously been found in a variety of environments—including ground water, soils and the atmosphere—the study demonstrates the wide REE contamination of the "plastisphere" that does not appear to be related to a single source or activity.
Andrew Turner et al, Rare earth elements in plastics, Science of The Total Environment (2021). DOI: 10.1016/j.scitotenv.2021.145405
https://phys.org/news/2021-02-plastic-recycling-results-rare-metals...
**
Scientists have used cutting-edge research in quantum computation and quantum technology to pioneer a radical new approach to determining how our Universe works at its most fundamental level.
An international team of experts have demonstrated that only quantum and not classical gravity could be used to create a certain informatic ingredient that is needed for quantum computation. Their research "Non-Gaussianity as a signature of a quantum theory of gravity" has been published recently in PRX Quantum.
For more than a hundred years, physicists have struggled to determine how the two foundational theories of science, quantum theoryand general relativity, which respectively describe microscopic and macroscopic phenomena, are unified into a single overarching theory of nature.
During this time, they have come up with two fundamentally contrasting approaches, called 'quantum gravity' and 'classical gravity'. However, a complete lack of experimental evidence means that physicists do not know which approach the overarching theory actually takes, our research provides an experimental approach to solving this.
This new research, which is a collaboration between experts in quantum computing, quantum gravity, and quantum experiments finds an unexpected connection between the fields of quantum computing and quantum gravity and uses this to propose a way to test experimentally that there is quantum not classical gravity. The suggested experiment would involve cooling billions of atoms in a millimeter-sized spherical trap to extremely low temperatures such that they enter a new phase of matter, called a Bose-Einstein condensate, and start to behave like a single large, quantum atom. A magnetic field is then applied to this "atom" so that it feels only its own gravitational pull. With this all in place, if the single gravitating atom demonstrates the key ingredient needed for quantum computation, which is curiously associated with "negative probability," nature must take the quantum gravity approach.
This proposed experiment uses current technology, involves just a single quantum system, the gravitating "atom," and does not rely on assumptions concerning the locality of the interaction, making it simpler than previous approaches and potentially expediating the delivery of the first experimental test of quantum gravity. Physicists would then, after more than a hundred years of research, finally have information on the true overarching, fundamental theory of nature.
Richard Howl et al, Non-Gaussianity as a Signature of a Quantum Theory of Gravity, PRX Quantum 2, 010325 – Published 17 February 2021, DOI: 10.1103/PRXQuantum.2.010325
https://phys.org/news/2021-02-quantum-collaboration-gravity-mysteri...
**
Messenger RNA (mRNA) vaccines to prevent COVID-19 have made headlines around the world recently, but scientists have also been working on mRNA vaccines to treat or prevent other diseases, including some forms of cancer. Now, researchers reporting in ACS' Nano Letters have developed a hydrogel that, when injected into mice with melanoma, slowly released RNA nanovaccines that shrank tumors and kept them from metastasizing.
Cancer immunotherapy vaccines work similarly to mRNA vaccines for COVID-19, except they activate the immune system to attack tumors instead of a virus. These vaccines contain mRNA that encodes proteins made specifically by tumor cells. When the mRNA enters antigen-presenting cells, they begin making the tumor protein and displaying it on their surfaces, triggering other immune cells to seek and destroy tumors that also make this protein. However, mRNA is an unstable molecule that is quickly degraded by enzymes in the body. For cancer immunotherapy, researchers have tried using nanoparticles to protect and deliver mRNA, but they are typically cleared from the body within 1-2 days after injection. Researchers wanted to develop a hydrogel that, when injected under the skin, would slowly release mRNA nanoparticles, along with an adjuvant—a molecule that helps activate the immune system.
To develop their system, the researchers used ovalbumin (a protein found in chicken egg whites) as a model antigen. The team mixed ovalbumin mRNA and an adjuvant with other compounds to form a hydrogel. When injected under the skin of mice with melanoma tumors engineered to express ovalbumin, the hydrogel slowly released mRNA and adjuvant nanoparticles over a 30-day period. The mRNA vaccine activated T cells and stimulated antibody production, causing tumors to shrink in the treated mice. Also, in contrast to untreated mice, the vaccinated mice did not show any metastasis to the lung.
These results demonstrate that the hydrogel has great potential for achieving long-lasting and efficient cancer immunotherapy with only a single treatment, the researchers say.
"In Situ Transforming RNA Nanovaccines from Polyethylenimine Functionalized Graphene Oxide Hydrogel for Durable Cancer Immunotherapy" Nano Letters (2021). pubs.acs.org/doi/abs/10.1021/acs.nanolett.0c05039
https://phys.org/news/2021-02-mrna-vaccine-cancer-immunotherapy.htm...
A group of researchers from the Fritz Haber Institute of the Max Planck Society and the Humboldt-Universität zu Berlin have found out that a semiconductor can be converted to a metal and back by light more easily and more quickly than previously thought. This discovery may increase the processing speed and simplify the design of many common technological devices.
--
Swimming in indoor or outdoor pools is a healthy form of exercise and recreation for many people. However, studies have linked compounds that arise from chlorine disinfection of the pools to respiratory problems, including asthma, in avid swimmers. Now, researchers reporting in ACS' Environmental Science & Technology have found that using a complementary form of disinfection, known as copper-silver ionization (CSI), can decrease disinfection byproducts and cell toxicity of chlorinated swimming pool water.
--
An international team of researchers has found no evidence of trans-Neptunian object clustering as part of an effort to refute the idea of the existence of Planet Nine. The group has written a paper describing their findings and have uploaded it to the arXiv preprint server.
--
When one of the Russian Progress resupply ships undocks from the International Space Station, timing is everything. The Progress needs to fire its engines at just the right time to instigate the deorbit burn in order for the ship to enter the atmosphere at just the right place so that its destructive re-entry occurs over the Pacific Ocean. That way, any potential surviving bits and pieces that might reach Earth will hit far away from any land masses—which are home to people, buildings, and other things we don't want to get bonked.
As people age, a normal brain protein known as amyloid beta often starts to collect into harmful amyloid plaques in the brain. Such plaques can be the first step on the path to Alzheimer's dementia. When they form around blood vessels in the brain, a condition known as cerebral amyloid angiopathy, the plaques also raise the risk of strokes.
Several antibodies that target amyloid plaques have been studied as experimental treatments for Alzheimer's disease. Such antibodies also may have the potential to treat cerebral amyloid angiopathy, although they haven't yet been evaluated in clinical trials. But all of the anti-amyloid antibodies that have successfully reduced amyloid plaques in Alzheimer's clinical trials also can cause a worrisome side effect: an increased risk of brain swelling and bleeds.
Now, researchers at Washington University School of Medicine in St. Louis have identified an antibody that, in mice, removes amyloid plaques from brain tissue and blood vessels without increasing risk of brain bleeds. The antibody targets a minor component of amyloid plaques known as apolipoprotein E (APOE).
The findings, published Feb. 17 in Science Translational Medicine, suggest a potentially safer approach to removing harmful amyloid plaques as a way of treating Alzheimer's disease and cerebral amyloid angiopathy.
"APOE immunotherapy reduces cerebral amyloid angiopathy and amyloid plaques while improving cerebrovascular function" Science Translational Medicine (2021). stm.sciencemag.org/lookup/doi/ … scitranslmed.abd7522
https://medicalxpress.com/news/2021-02-protein-linked-alzheimer-bra...
**
New skin patch brings us closer to wearable, all-in-one health monitor
Numerous studies have shown that trained dogs can detect many kinds of disease—including lung, breast, ovarian, bladder, and prostate cancers, and possibly COVID-19—simply through smell. In some cases, involving prostate cancer for example, the dogs had a 99 percent success rate in detecting the disease by sniffing patients' urine samples.
But it takes time to train such dogs, and their availability and time is limited. Scientists have been hunting for ways of automating the amazing olfactory capabilities of the canine nose and brain, in a compact device. Now, a team of researchers at MIT and other institutions has come up with a system that can detect the chemical and microbial content of an air sample with even greater sensitivity than a dog's nose. They coupled this to a machine-learning process that can identify the distinctive characteristics of the disease-bearing samples.
The findings, which the researchers say could someday lead to an automated odor-detection system small enough to be incorporated into a cellphone, are being published recently in the journal PLoS ONE.
Guest C, Harris R, Sfanos KS, Shrestha E, Partin AW, Trock B, et al. (2021) Feasibility of integrating canine olfaction with chemical and microbial profiling of urine to detect lethal prostate cancer. PLoS ONE 16(2): e0245530. doi.org/10.1371/journal.pone.0245530
https://phys.org/news/2021-02-disease-sniffing-device-rivals-dog-no...
A University of Sydney-led international team of scientists has revealed the shape of one of the most important molecular machines in our cellsthe glutamate transporter, helping to explain how our brain cells communicate with one another.
Glutamate transporters are tiny proteins on the surface of all our cells that shut on and off the chemical signals that have a big role in making sure all cell-to-cell talk runs smoothly. They are also involved in nerve signalling, metabolism and learning and memory.
The researchers captured the transporters in exquisite detail using cryogenic electron microscopy (cryo-EM), showing they look like a 'twisted elevator' embedded in the cell membrane.
This world-first discovery opens a whole new field of possibility, studying if defects in the transporters could be the reason behind neurological diseases such as Alzheimer's disease.
The results of the research have been published in Nature.
Using Cryo-EM,researchers have uncovered for the first time just how these transporters can multitask—carrying out the dual functions of moving chemicals (like glutamate) across the cell membrane while also allowing water and chloride ions to move through at the same time. These molecular machines use a really cool twisting, elevator-like mechanism to move their cargo across the cell membrane. But they also have an additional function where they can allow water and chloride ions to move across the cell membrane.
Understanding how the molecular machines in our cells work enables us to interpret defects in these machines in disease states and also gives us clues as to how we might target these machines with therapeutics.
Mapping out in detail the structure of the glutamate transporter could be a crucial tool for researchers in understanding how our bodies work ,and the mechanism behind some diseases.
Defects in the glutamate transporter have been linked to many neurological diseases such as Alzheimer's disease and stroke.
This includes rare diseases such as episodic ataxia, a disease that impacts movement and causes periodic paralysis, caused by an uncontrolled leak of chloride through the glutamate transporter in brain cells.
Glutamate transporters have a chloride channel with two hydrophobic gates, Nature (2021). DOI: 10.1038/s41586-021-03240-9 , dx.doi.org/10.1038/s41586-021-03240-9
https://phys.org/news/2021-02-elevator-key-neurological-diseases.ht...
**
To meet the demands of high-definition video and data-intensive scientific research, NASA and other space agencies are pushing the radio bands traditionally allocated for space research to their limits. For example, the Orion spacecraft, which will carry astronauts around the moon during NASA’s Artemis 2 mission in 2022, will transmit mission-critical information to Earth via an S-band radio at 2 megabits per second. “It’s the most complex flight-management system ever flown on a spacecraft.
To boost data rates even higher means moving beyond radio and developing optical communications systems that use lasers to beam data across space. In addition to its S-band radio, Orion will carry a laser communications system for sending ultrahigh-definition 4K video back to Earth. And further out, NASA’s Gateway will create a long-term laser communications hub linking our planet and its satellite.
Laser communications are a tricky proposition. The slightest jolt to a spacecraft could send a laser beam wildly off course, while a passing cloud could interrupt it. But if they work, robust optical communications will allow future missions to receive software updates in minutes, not days. Astronauts will be sheltered from the loneliness of working in space. And the scientific community will have access to an unprecedented flow of data between Earth and the moon.
https://spectrum.ieee.org/telecom/wireless/lunar-pioneers-will-use-...
Cities don't just have sea level rises to worry about – they're also slowly sinking under the weight of their own development, according to new research, which emphasises the importance of factoring subsidence into models of climate change risk.
As global populations move disproportionately toward the coasts, this additional subsidence in combination with expected sea level rise may exacerbate risk associated with inundation.
Anthropogenic loading effects at tectonically active continental margins are likely greater than more stable continental interiors where the lithosphere tends to be thicker and more rigid.
There are plenty of other causes of subsidence to think about too, including tectonic plate shifting and the groundwater pumping necessary to support a growing population – something we've seen cause significant city sinking in other parts of the world. The findings are notable enough to make city weight another consideration when scientists are figuring out how geography might change over time, and which areas are under threat as the sea level gets higher.
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020AV000277
https://www.sciencealert.com/the-weight-of-cities-is-sinking-urban-...
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!