Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 1 hour ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 2 hours ago. 1 Reply 0 Likes
The problem is simple: it's hard to know whether a photo's real or not anymore. Photo manipulation tools are so good, so common and easy to use, that a picture's truthfulness is no longer…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 12 Replies 0 Likes
Headlines in the media screaming: Humans dump 8 million tonnes of plastics into the oceans each year. That's five grocery bags of plastic for every foot of coastline in the world.Plastic, plastic,…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 1 Reply 0 Likes
As we age, it's common to notice posture changes: shoulders rounding, head leaning forward, back starting to curve. You might associate this with older adults and wonder: will this happen to me? Can…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Live and on-demand video constituted an estimated …Continue
Comment
Exposure to COVID-19 could pose a risk to the health and aging of individuals who aren't even born yet, according to a newly published analysis by USC researchers.
by the end of 2020, approximately 300,000 infants could be born to mothers infected by SARS-CoV-2, the virus that causes COVID-19. Millions more will be born into families who have experienced tremendous stress and upheaval due to the pandemic even if they haven't been infected themselves, the authors added.
While the longer-term effects of COVID-19 on infants is yet to be seen, researchers can find some insight from the past, including the 1918 flu pandemic and previous coronavirus illnesses such as SARS in 2002 and MERS in 2012, Finch said.
"The 1918 influenza pandemic had long-term impacts on the cohort exposed in utero, which experienced earlier adult mortality and more diabetes, ischemic heart disease and depression after age 50," he said. "It is possible that the COVID-19 pandemic will also have long-term impacts on the cohort that was in utero during the pandemic, from exposure to maternal infection and/or the stress of the pandemic environment."
Maternal viral infections can affect fetuses through multiple pathways, from direct transmission through the placenta to inflammatory responses that disturb in-utero metabolism a
nd negatively affect growth. While direct maternal-fetal transmission of the virus and severe birth defects appear to have been rare during previous coronavirus outbreaks, there were increases in preterm delivery and low birth weight during both the 2002 SARS and 2009 H1N1 influenza outbreaks, which are possible consequences of increased inflammation.
While studies on COVID-19 and pregnancy are still in their early stages, there have already been some concerning results that merit a closer look in ongoing studies, the authors wrote. Increased rates of preterm birth may be linked to maternal SARS-CoV-2 infections, and other studies indicate that severe illness is correlated with a higher risk of stillbirth. Other potential dangers, including the increased risk of blood clots presented by both pregnancy and severe COVID-19, also need further study.
Molly Crimmins Easterlin et al, Will prenatal exposure to SARS-CoV-2 define a birth cohort with accelerated aging in the century ahead?, Journal of Developmental Origins of Health and Disease (2020). DOI: 10.1017/S204017442000104X
https://medicalxpress.com/news/2020-11-in-utero-exposure-coronaviru...
COVID-19 vaccines are coming – how will we know they work and are safe?
https://theconversation.com/covid-19-vaccines-are-coming-how-will-w...
--
why do older adults get shorter?
It's not just older adults who get shorter. You start shrinking, the moment you get out of bed in the morning.
https://theconversation.com/curious-kids-why-do-older-adults-get-sh...
Imagine a world where you move around in your own personal sound bubble. You listen to your favorite tunes, play loud computer games, watch a movie or get navigation directions in your car—all without disturbing those around you.
That's the possibility presented by "sound beaming," a new futuristic audio technology from Noveto Systems. On Friday it debuted a desktop device that beams sound directly to a listener without the need for headphones.
The listening sensation is straight out of a sci-fi movie. The 3-D sound is so close it feels like it's inside your ears while also in front, above and behind them.
Noveto expects the device will have plenty of practical uses, from allowing office workers to listen to music or conference calls without interrupting colleagues to letting someone play a game, movie or music without disturbing their significant others.
The lack of headphones means it's possible to hear other sounds in the room clearly.
The technology uses a 3-D sensing module and locates and tracks the ear position sending audio via ultrasonic waves to create sound pockets by the user's ears. Sound can be heard in stereo or a spatial 3-D mode that creates 360 degree sound around the listener, the company said.
The demo includes nature video clips of swans on a lake, bees buzzing and a babbling brook, where the listener feels completely transported into the scene.
You don't believe it because it sounds like a speaker, but no one else can hear it…it's supporting you and you're in the middle of everything. It's happening around you."
By changing a setting, the sound can follow a listener around when they move their head. It's also possible to move out of the beam's path and hear nothing at all, which creates a surreal experience.
It follows you wherever you go. So it's personally for you—follows you, plays what you want inside your head.
https://techxplore.com/news/2020-11-device-music-headno-headphones-...
At the moment the quickest superbug diagnosis time is around 24 hours. Now new research has identified a way of completing the whole blood sampling and analysis process in the space of just one hour.
Researchers from across the fields of molecular biology, chemistry, integrated optics and chemical processing put their heads together to come up with the new process, which can look out for three different superbugs in one go.
Through a process of blood spinning, the bacteria are isolated from the samples so their DNA can be analysed. The researchers used fluorescent molecules designed to bind specifically to segments of bacterial DNA that contain known antibiotic resistant genes. If these genes were present in the sample, they could then be detected by a microchip.
Every hour the disease is untreated, survivability drops by about 7 percent. You want to know what you're fighting immediately so you can apply the right treatments.
https://pubs.rsc.org/en/content/articlelanding/2020/lc/d0lc00640h#!...
https://www.sciencealert.com/new-test-can-spot-superbugs-in-your-bl...
A staggering 3 million deaths occur every year as result from harmful use of alcohol, according to the World Health Organization.
Present in alcoholic drinks, ethanol, normally referred to as 'alcohol', affects every part of the human body. Brain function, circulation and even nail growth are impacted. When a certain level of blood alcohol concentration is reached, the intoxication can damage organs and lead to death.
Now a team of researchers presents a proof of concept of a simple method that could become a game-changer in rescue therapy for severe alcohol intoxication, as well as just "sobering up."
Normally, 90% of the alcohol in the human body is cleared exclusively by the liver at constant rate that can't be increased. Currently there is no other method, short of dialysis, whereby alcohol can be removed from the blood. This leaves as the only options to treat life-threatening alcohol levels supportive measures such as giving oxygen, intravenous fluids, breathing assistance, and treating any heart issues with drugs.
The principle behind UHN team's approach is simply to recruit the lungs to breathe out the alcohol. The harder the breathing, it was reasoned, the more alcohol is eliminated. The team found that indeed, hyperventilation eliminated the alcohol at least three times faster than through the liver alone. But you can't just hyperventilate, because in a minute or two you would become light-headed and pass out.
When hyperventilating—breathing deeper and more rapidly than normal—the body eliminates carbon dioxide from the blood along with the alcohol. The decrease of this gas in the blood is the cause of symptoms such as light-headedness, tingling or numbness on hands and feet, and fainting.
The device used in this study allows the patient to hyperventilate off the alcohol while returning precisely the amount of carbon dioxide to the body to keep it at normal levels in the blood—regardless of the extent of hyperventilation. The equipment is the size of a small briefcase and uses a valve system, some connecting tubes, a mask, and a small tank with compressed carbon dioxide.
Scientific Reports (2020). DOI: 10.1038/s41598-020-76233-9
https://medicalxpress.com/news/2020-11-potential-game-changer-rever...
A team of researchers for the first time has found a correlation between the levels of bacteria and fungi in the gastrointestinal tract of children and the amount of common chemicals found in their home environment.
The work could lead to better understanding of how these semi-volatile organic compounds may affect human health.
The microbes in our gut, which include a large variety of bacteria and fungi, are thought to affect many processes, from nutrient absorption to our immunity, and an unhealthy microbiome has been implicated in diseases ranging from obesity to asthma and dementia.
In the study, the researchers measured levels of ubiquitous semi-organic compounds in the blood and urine of 69 toddlers and preschoolers and then, using fecal samples, studied the children's gut microbiomes. The semi-volatile organic compounds they measured included phthalates that are used in detergents, plastic clothing such as raincoats, shower curtains, and personal-care products, such as soap, shampoo, and hair spray, as well as per- and polyfluoroalkyl substances (PFASs), which are used in stain- and water-repellent fabrics, coatings for carpets and furniture, nonstick cooking products, polishes, paints, and cleaning products. People are exposed daily to such chemicals in the air and dust in their homes, especially young children who might ingest them by crawling on carpets or frequently putting objects in their mouths.
When the researchers looked at the levels of fungi and bacteria in the gut, they found that children who had higher levels of the chemicals in their bloodstream showed differences in their gut microbiome.
Children with higher levels of PFASs in their blood had a reduction in the amount and diversity of bacteria, while increased levels of phthalates were associated with a reduction in fungi populations.
The correlation between the chemicals and less abundant bacterial organisms was especially pronounced and potentially most concerning.
The researchers also found, surprisingly, that the children who had high levels of chemical compounds in their blood also had in their gut several types of bacteria that have been used to clean up toxic chemicals. Dehalogenating bacteria have been used for bioremediation to degrade persistent halogenated chemicals like dry cleaning solvents from the environment. These bacteria are not typically found in the human gut.
"Finding the increased levels of these type of bacteria in the gut means that, potentially, the gut microbiome is trying to correct itself.
Courtney M. Gardner et al, Exposures to Semivolatile Organic Compounds in Indoor Environments and Associations with the Gut Microbiomes of Children, Environmental Science & Technology Letters (2020). DOI: 10.1021/acs.estlett.0c00776
https://medicalxpress.com/news/2020-11-household-chemicals-gut-micr...
New epidemic diseases have an evolutionary advantage if they are of "intermediate" severity, research shows.
Scientists tested the theory that pathogens (disease-causing organisms) that inflict intermediate levels of harm on their host are the most evolutionarily successful.
found that natural selection favors pathogens of intermediate virulence (how much harm a pathogen causes) at the point the disease emerges in a new host species.
This occurs because virulence and transmission are linked, with virulence arising because pathogens need to exploit hosts to persist, replicate and transmit.
While too-low virulence will be detrimental for pathogens if they cannot transmit, virulence that is too high will also be a disadvantage if infection kills hosts so fast that the pathogen does not have time to transmit.
Over time, pathogens that show intermediate levels of virulence should therefore have an evolutionary advantage.
Camille Bonneaud et al, Experimental evidence for stabilizing selection on virulence in a bacterial pathogen, Evolution Letters (2020). DOI: 10.1002/evl3.203
https://phys.org/news/2020-11-evolution-favors-diseases-intermediat...
Scientists have designed a set of "green" tableware made from sugarcane and bamboo that doesn't sacrifice on convenience or functionality and could serve as a potential alternative to plastic cups and other disposable plastic containers. Unlike traditional plastic or biodegradable polymers—which can take as long as 450 years or require high temperatures to degrade—this non-toxic, eco-friendly material only takes 60 days to break down and is clean enough to hold your morning coffee or dinner takeout.
To find an alternative for plastic-based food containers, researchers turned to bamboos and one of the largest food-industry waste products: bagasse, also known as sugarcane pulp. Winding together long and thin bamboo fibers with short and thick bagasse fibers to form a tight network, the team molded containers from the two materials that were mechanically stable and biodegradable. The new green tableware is not only strong enough to hold liquids as plastic does and cleaner than biodegradables made from recycled materials that might not be fully de-inked, but also starts decomposing after being in the soil for 30-45 days and completely loses its shape after 60 days.
The researchers added alkyl ketene dimer (AKD), a widely used eco-friendly chemical in the food industry, to increase oil and water resistance of the molded tableware, ensuring the sturdiness of the product when wet. With the addition of this ingredient, the new tableware outperformed commercial biodegradable food containers, such as other bagasse-based tableware and egg cartons, in mechanical strength, grease resistance, and non-toxicity.
The tableware the researchers developed also comes with another advantage: a significantly smaller carbon footprint. The new product's manufacturing process emits 97% less CO2 than commercially available plastic containers and 65% less CO2 than paper products and biodegradable plastic.
Matter, Liu, Luan, and Li et al.: "Biodegradable, Hygienic, and Compostable Tableware from Hybrid Sugarcane and Bamboo Fibers as Plastic Alternative" www.cell.com/matter/fulltext/S2590-2385(20)30558-0 , DOI: 10.1016/j.matt.2020.10.004
https://phys.org/news/2020-11-tableware-sugarcane-bamboo-days.html?...
A high-sugar diet reprograms the taste cells in fruit flies, dulling their sensitivity to sugar and leaving a "molecular memory" on their tongues, according to a study.
Researchers found that high-sugar diets completely remodelled the flies' taste cells, leaving a molecular memory that lasts even when the flies were switched back to healthy diets. The molecular memory of the previous diet could lock animals into a pattern of unhealthy eating behaviour.
When we eat food, it just takes a few bites for it to go away. We don't really think of it being something that could have this kind of lasting effect on our brain. But when the animals were moved to a different food environment, such as a healthy diet, they kept the molecular memory of the high-sugar diet in their cells. This shows the past food environment may influence the future behaviours of the animals.
Specifically, the researchers found that a high-sugar diet reprogrammed cells located in the mouths of fruit flies that sense sweetness, leading them to malfunction. This reprogramming involved an epigenetic regulator called Polycomb Repressive Complex 2.1, or PRC2. Epigenetic regulators are groups of enzymes that can affect how much and whether a gene is expressed by remodelling a material called chromatin. Chromatin comprises the material of chromosomes in everything from plants to humans.
In this case, the research team found the way PRC2 is distributed in the chromatin of neurons that sense sweet taste changes when flies are on a high-sugar diet. They found that this change activates some genes and silences others—specifically, the genes that are involved in detecting sweetness.
So, through this very specific pathway, a high-sugar diet can silence genes required for sweet taste. Even more interesting is that the effect of gene silencing is actually persistent so that even when the animals are removed from the high-sugar diet, the genes associated with taste are still changed and the animals still experience sweet taste defects.
A. Vaziri el al., "Persistent epigenetic reprogramming of sweet taste by diet," Science Advances (2020). advances.sciencemag.org/lookup … .1126/sciadv.abc8492
https://phys.org/news/2020-11-sugar-remodels-molecular-memory-fruit...
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!