Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 6 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Sunday. 1 Reply 0 Likes
Q: How Big is the universe?Krishna: The total size of the universe is not known, and some scientists think it could be many times larger than the observable portion. For example, one hypothesis…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Saturday. 1 Reply 0 Likes
Q: Why do some people commit crimes? What does science say about it?Krishna: It is easy to blame people. But did you know that the way your brain wires or rewires because of different situations it…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Jun 25. 1 Reply 0 Likes
Cars may be a modern phenomenon, but motion sickness is not. More than 2,000 years ago, the physician …Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Jun 25. 1 Reply 0 Likes
"De-evolution" or "devolution" is a concept suggesting that species can revert to more primitive forms over time.Some scientists don't accept this concept at all. They say Evolution is a continuous…Continue
Comment
Play sport or watch it? You’re probably emitting an astonishing amount of CO₂!
Few people would stop to consider if their sporting activities damage the environment. But research shows people in some places use a huge chunk of their “personal carbon budget” driving to and from sport events each year – either to watch or participate, or to transport children. Travel for soccer, swimming, cricket, football, basketball and tennis featured most commonly, followed by gym, jogging, walking and golf. The analysis assumed walking and biking to an activity emits no greenhouse gases. Public transport accounts for less than 0.02 kilograms per kilometre (kg/km). A combustion engine car produces an average 0.29 kg/km. Such sport-related travel behaviour may be due to various factors, including: a long distance to sporting facilities sports facilities not served by public transport and not connected to safe cycle paths lifestyle choice and convenience persistent habits due to lack of awareness and role models. So now it’s time sports organisations turned their collective minds to better understanding the costs and damage caused by CO₂ emissions – and finding solutions.
https://theconversation.com/drive-to-football-take-your-kids-to-the...
As the plastic in our oceans breaks up into smaller and smaller bits without breaking down chemically, the resulting microplastics are becoming a serious ecological problem. A new study at the Weizmann Institute of Science reveals a troubling aspect of microplastics—defined as particles smaller than 5 mm across. They are swept up into the atmosphere and carried on the wind to far-flung parts of the ocean, including those that appear to be clear. Analysis reveals that such minuscule fragments can stay airborne for hours or days, spreading the potential to harm the marine environment and, by climbing up the food chain, to affect human health.
A handful of studies have found microplastics in the atmosphere right above the water near shorelines.
Trainic, M., Flores, J.M., Pinkas, I. et al. Airborne microplastic particles detected in the remote marine atmosphere. Commun Earth Environ 1, 64 (2020). doi.org/10.1038/s43247-020-00061-
https://phys.org/news/2020-12-plastic.html?utm_source=nwletter&...
** Highest levels of microplastics found in molluscs, new study says
Mussels, oysters and scallops have the highest levels of microplastic contamination among seafood, a new study reveals.
The research looked at more than 50 studies between 2014 and 2020 to investigate the levels of microplastic contamination globally in fish and shellfish.
Scientists are still trying to understand the health implications for humans consuming fish and shellfish contaminated with these tiny particles of waste plastic, which finds its ways into waterways and oceans through waste mismanagement.
The paper, "Microplastic contamination of seafood intended for human consumption: a systematic review and meta-analysis" is published in Environmental Health Perspectives.
Scientists have discovered a new class of compounds that uniquely combine direct antibiotic killing of pan drug-resistant bacterial pathogens with a simultaneous rapid immune response for combatting antimicrobial resistance (AMR).
Existing antibiotics target essential bacterial functions, including nucleic acid and protein synthesis, building of the cell membrane, and metabolic pathways. However, bacteria can acquire drug resistance by mutating the bacterial target the antibiotic is directed against, inactivating the drugs or pumping them out.
However, harnessing the immune system to simultaneously attack bacteria on two different fronts makes it hard for them to develop resistance.
So researchers focused on a metabolic pathway that is essential for most bacteria but absent in humans, making it an ideal target for antibiotic development. This pathway, called methyl-D-erythritol phosphate (MEP) or non-mevalonate pathway, is responsible for biosynthesis of isoprenoids—molecules required for cell survival in most pathogenic bacteria. The lab targeted the IspH enzyme, an essential enzyme in isoprenoid biosynthesis, as a way to block this pathway and kill the microbes. Given the broad presence of IspH in the bacterial world, this approach may target a wide range of bacteria.
Researchers used computer modeling to screen several million commercially available compounds for their ability to bind with the enzyme, and selected the most potent ones that inhibited IspH function as starting points for drug discovery.
The team demonstrated that the IspH inhibitors stimulated the immune system with more potent bacterial killing activity and specificity than current best-in-class antibiotics when tested in vitro on clinical isolates of antibiotic-resistant bacteria, including a wide range of pathogenic gram negative and gram positive bacteria. In preclinical models of gram negative bacterial infection, the bactericidal effects of the IspH inhibitors outperformed traditional pan antibiotics. All compounds tested were shown to be nontoxic to human cells.
IspH inhibitors kill Gram-negative bacteria and mobilize immune clearance, Nature (2020). DOI: 10.1038/s41586-020-03074-x , www.nature.com/articles/s41586-020-03074-x
https://medicalxpress.com/news/2020-12-team-class-antibiotics-wide-...
Dropping your smartphone often means living with a cracked screen until your next upgrade, or footing an expensive repair bill – but researchers have been busy bringing self-healing display technology closer to a practical reality.
A team from the Korea Institute of Science and Technology (KIST) has developed a self-healing electronic material that can repair its own cracks and other physical damage, and it has one secret ingredient: linseed oil.
Linseed oil is made from flax plant seeds, and these same seeds were adapted by the researchers in a similar way in order to add them to colourless polyimide (CPI) – an alternative to glass that's already finding uses in folding smartphone screens.
That added oil ingredient is able to seep into cracks made when the CPI is fractured, and – if the scientists are able to get it working reliably at scale, could mean screens that are able to bandage their own wounds after a smash.
Researchers were able to develop a self-healing, colourless polyimide that can radically solve the physical properties and lifespan of damaged polymer materials.
The linseed oil that aids this self-healing was first loaded into microcapsules which were then mixed with a silicone material. That material was then used as a coating on top of CPI in the experiments the researchers ran.
The way that the material is designed means that breaks in the CPI also lead to breaks in the microcapsules, releasing the stored oil to repair the damage. When the oil substance hits the air, it hardens, and the material is almost as good as new.
Even better, this all works at room temperature and without the need for external pressure, unlike similar self-healing materials that have been explored before. Higher temperatures, greater humidity and ultraviolet light can speed up the healing process, the researchers report.
https://www.sciencedirect.com/science/article/abs/pii/S135983682033...
https://www.sciencealert.com/we-re-another-step-towards-smartphone-...
Scientists from Nanyang Technological University, Singapore (NTU Singapore), have developed a new way to cure adhesives using a magnetic field.
Conventional adhesives like epoxy which are used to bond plastic, ceramics and wood are typically designed to cure using moisture, heat or light. They often require specific curing temperatures, ranging from room temperature up to 80 degrees Celsius.
The curing process is necessary to cross-link and bond the glue with the two secured surfaces as the glue crystallizes and hardens to achieve its final strength.
NTU's new 'magnetocuring' glue can cure by passing it through a magnetic field. This is very useful in certain environmental conditions where current adhesives do not work well. Also, when the adhesive is sandwiched between insulating material like rubber or wood, traditional activators like heat, light and air cannot easily reach the adhesive.
The new adhesive is made of two main components—a commercially available epoxy that is cured through heat, and oxide nanoparticles made from a chemical combination including manganese, zinc and iron (MnxZn1-xFe2O4).
These nanoparticles are designed to heat up when electromagnetic energy is passed through them, activating the curing process. The maximum temperature and rate of heating can be controlled by these special nanoparticles, eliminating overheating and hotspot formation.
Richa Chaudhary et al, Magnetocuring of temperature failsafe epoxy adhesives, Applied Materials Today (2020). DOI: 10.1016/j.apmt.2020.100824
https://phys.org/news/2020-12-scientists-magnetic-field.html?utm_so...
Scientists have described the structure and properties of a novel hydrogen clathrate hydrate that forms at room temperature and relatively low pressure. Hydrogen hydrates are a potential solution for storage and transportation of hydrogen, the most environmentally friendly fuel.
Ice is a highly complex substance that has multiple polymorphic modifications that keep growing in number as scientists make new discoveries. The physical properties of ice vary greatly, too: for example, hydrogen bonds become symmetric at high pressures, making it impossible to distinguish a single water molecule, whereas low pressures cause proton disorder, placing water molecules in many possible spatial orientations within the crystal structure. Ice around us, including snowflakes, is always proton-disordered. Ice can incorporate xenon, chlorine, carbon dioxide or methane molecules and form gas hydrates which often have a different structure from pure ice. The vast bulk of Earth's natural gas exists in the form of gas hydrates.
In their new study, the chemists focused on hydrogen hydrates. Gas hydrates hold great interest both for theoretical research and practical applications, such as hydrogen storage. If stored in its natural form, hydrogen poses an explosion hazard, whereas density is way too low even in compressed hydrogen. That is why scientists are looking for cost-effective hydrogen storage solutions.
This is not the first time we turn to hydrogen hydrates. In our previous research, we predicted a novel hydrogen hydrate with 2 hydrogen molecules per water molecule. Unfortunately, this exceptional hydrate can only exist at pressures above 380,000 atmospheres, which is easy to achieve in the lab, but is hardly usable in practical applications. The new paper describes hydrates that contain less hydrogen but can exist at much lower pressures.
Yu Wang et al. Novel Hydrogen Clathrate Hydrate, Physical Review Letters (2020). DOI: 10.1103/PhysRevLett.125.255702
https://phys.org/news/2020-12-chemists-ice.html?utm_source=nwletter...
Simply wearing a mask may not be enough to prevent the spread of COVID-19 without social distancing.
In Physics of Fluids, researchers tested how five different types of mask materials impacted the spread of droplets that carry the coronavirus when we cough or sneeze.
Every material tested dramatically reduced the number of droplets that were spread. But at distances of less than 6 feet, enough droplets to potentially cause illness still made it through several of the materials.
"A mask definitely helps, but if the people are very close to each other, there is still a chance of spreading or contracting the virus".
Without a face mask, it is almost certain that many foreign droplets will transfer to the susceptible person. "Wearing a mask will offer substantial, but not complete, protection to a susceptible person by decreasing the number of foreign airborne sneeze and cough droplets that would otherwise enter the person without the mask. Consideration must be given to minimize or avoid close face-to-face or frontal human interactions, if possible."
The study also did not account for leakage from masks, whether worn properly or improperly, which can add to the number of droplets that make their way into the air.
"Can face masks offer protection from airborne sneeze and cough droplets in close-up, face-to-face human interactions? A quantitative study," Physics of Fluids, aip.scitation.org/doi/10.1063/5.0035072
https://phys.org/news/2020-12-masks-covid-distancing.html?utm_sourc...
**
Researchers at Carnegie Mellon University report findings on an advanced nanomaterial-based biosensing platform that detects, within seconds, antibodies specific to SARS-CoV-2, the virus responsible for the COVID-19 pandemic. In addition to testing, the platform will help to quantify patient immunological response to the new vaccines with precision.
--
There are many different events which may lead to excessive and uncontrolled bleeding within the body. This can occur as a result of inflammation and ulcerations, abnormalities in the blood vessels or trauma-related injuries. Individuals with predisposing conditions, such as cardiac patients, are at particular risk of internal bleeding due to the anticoagulants they are often prescribed as a preventive measure. They are also prone to gastrointestinal bleeds, affecting 40% of patients who are on cardiac assistance devices. In addition to the need for an effective treatment for these conditions, there are also indications for controlling the blood flow that contribute to aneurysms and tumor cell vascularization.
**
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!