Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 54 minutes ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Sunday. 1 Reply 0 Likes
Q: How Big is the universe?Krishna: The total size of the universe is not known, and some scientists think it could be many times larger than the observable portion. For example, one hypothesis…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Saturday. 1 Reply 0 Likes
Q: Why do some people commit crimes? What does science say about it?Krishna: It is easy to blame people. But did you know that the way your brain wires or rewires because of different situations it…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 1 Reply 0 Likes
Cars may be a modern phenomenon, but motion sickness is not. More than 2,000 years ago, the physician …Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Jun 25. 1 Reply 0 Likes
"De-evolution" or "devolution" is a concept suggesting that species can revert to more primitive forms over time.Some scientists don't accept this concept at all. They say Evolution is a continuous…Continue
Comment
When surgeons remove cancer, one of the first questions is, “Did they get it all?” Researchers from Rice University and the University of Texas MD Anderson Cancer Center have created a new microscope that can quickly and inexpensively image large tissue sections, potentially during surgery, to find the answer. The microscope can rapidly image relatively thick pieces of tissue with cellular resolution, and could allow surgeons to inspect the margins of tumors within minutes of their removal. It was created by engineers and applied physicists at Rice and is described in a study published this week in the Proceedings of the National Academy of Sciences.
Computational simulations have been used to accurately predict airflow and droplet dispersal patterns in situations where COVID-19 might be spread. In the journal Physics of Fluids, results show the importance of the shape of the space in modeling how virus-laden droplets move through the air.
The simulations are used to determine flow patterns behind a walking individual in spaces of different shape. The results reveal a higher transmission risk for children in some instances, such as behind quickly moving people in a long narrow hallway.
Previous investigations using this simulation technique have helped scientists understand the influence of objects, like glass barriers, windows, air conditioners, and toilets, on airflow patterns and virus spread. The previous simulations have usually assumed a large, open indoor space but have not considered the effect of nearby walls, like those that might exist in a narrow corridor.
If a person walking in a corridor coughs, their breath expels droplets that travel around and behind their body, forming a wake in the way a boat forms a wake in water as it travels. The investigation revealed the existence of a "re-circulation bubble" directly behind the person's torso and a long wake streaming out behind them at approximately waist height.
The flow patterns found are strongly related to the shape of the human body. At 2 meters downstream, the wake is almost negligible at mouth height and leg height but is still visible at waist height.
Once the airflow patterns were determined, the investigation modeled the dispersal of a cloud of droplets expelled from the simulated person's mouth. The shape of the space surrounding the moving person is particularly critical for this part of the calculation.
Two types of dispersal modes were found. In one mode, the cloud of droplets detaches from the moving person and floats far behind that individual, creating a floating bubble of virus-laden droplets. In the other mode, the cloud is attached to the person's back, trailing behind them like a tail as they move through the space.
For the detached mode, the droplet concentration is much higher than for the attached mode, five seconds after a cough. This poses a great challenge in determining a safe social distance in places like a very narrow corridor, where a person may inhale viral droplets even if the patient is far in front of him or her.
The danger is particularly great for children, since in both modes, the cloud of droplets hovers at a distance above the ground that is about half the height of the infected person—in other words, at mouth level for children.
"Effects of space sizes on the dispersion of cough-generated droplets from a walking person," Physics of Fluids (2020). aip.scitation.org/doi/10.1063/5.0034874
https://phys.org/news/2020-12-fast-narrow-corridors-covid-transmiss...
How many particles do you need before individual atoms start behaving collectively? According to new research, the number is incredibly low. As few as six atoms will start transitioning into a macroscopic system, under the right conditions.
Using a specially designed ultra-cold laser trap, physicists observed the quantum precursor of the transition from a normal to a superfluid phase – offering a way to study the emergence of collective atomic behaviour and the limits of macroscopic systems.
Many-body physics is the field that seeks to describe and understand the collective behaviour of large numbers of particles: a bucket of water, for example, or a canister of gas. We can describe these substances in terms of their density, or their temperature – the way the substance is acting as a whole.
These are called macroscopic or many-body systems, and we can't understand them by just studying the behaviour of individual atoms or molecules. Rather, their behaviour emerges from the interactions between particles that individually do not have the same properties of the system as a whole.
Some examples of macroscopic behaviours that can't be described microscopically include collective excitations, such as the phonons that oscillate atoms in a crystal lattice. Phase transitions are another example – when a substance transitions from one phase to another – such as when ice melts into liquid, for example, or when liquid evaporates into a gas.
https://www.nature.com/articles/s41586-020-2936-y
https://www.sciencealert.com/quantum-simulator-reveals-that-phase-t...
Here we observe the few-body precursor of a quantum phase transition from a normal to a superfluid phase. The transition is signalled by the softening of the mode associated with amplitude vibrations of the order parameter, usually referred to as a Higgs mode7. We achieve fine control over ultracold fermions confined to two-dimensional harmonic potentials and prepare closed-shell configurations of 2, 6 and 12 fermionic atoms in the ground state with high fidelity.
Colorful, magnetic Janus balls could help foil counterfeiters
Counterfeiters who sell knockoffs of popular shoes, handbags and other items are becoming increasingly sophisticated, forcing manufacturers to find new technologies to stay one step ahead. Now, researchers reporting in ACS Nano have developed tiny Janus balls that show their colored side under a magnetic field. These microparticles could be useful in inks for anti-counterfeiting tags, which could be verified with an ordinary magnet, the researchers say.
Janus balls are microspheres that have two sides with distinct properties. Researchers wanted to make Janus balls out of two unmixable resins: one that contained magnetic nanoparticles, and another that contained silica particles. The magnetic side of the ball would also contain carbon black, causing that hemisphere to appear dark, whereas the silica particles on the other side of the ball would self-assemble into a crystalline lattice, producing structural colors. The result would be tiny balls that normally have their black sides facing up, except when a magnetic field causes them to flip to their colorful sides.
To make Janus balls, the researchers used a microfluidic device to unite drops of the two resins, with a surfactant added to stabilize the joined drops into a spherical shape. Because the silica-containing colored side of the drops was heavier than the black magnetic side, the force of gravity caused the black side to spontaneously face upward, like a roly-poly toy, when the balls were placed in water. Then, the researchers permanently aligned the magnetic nanoparticles in the balls in the same direction. By applying a magnetic field in the opposite direction, they could flip the balls to their colored sides. The researchers made red and green Janus balls by using different sizes of silica particles, with their magnetic nanoparticles aligned in opposite directions. By changing the direction of the applied magnetic field, they could change the colors of 3D-printed chameleon and butterfly shapes. Using different colors and orientations of Janus balls in inks could produce sophisticated, user-interactive anti-counterfeiting tags, the researchers say.
https://www.acs.org/content/acs/en/pressroom/presspacs/2020/acs-pre...
Animals that have never been domesticated, such as kangaroos, can intentionally communicate with humans, challenging the notion that this behavior is usually restricted to domesticated animals like dogs, horses or goats, a new study has found.
The research which involved kangaroos, marsupials that were never domesticated, at three locations across Australia, revealed that kangaroos gazed at a human when trying to access food which had been put in a closed box. The kangaroos used gazes to communicate with the human instead of attempting to open the box themselves, a behaviour that is usually expected for domesticated animals.
https://www.sciencedaily.com/releases/2020/12/201217135258.htm
--
https://theconversation.com/coronavirus-new-variant-genomics-resear...
Coronavirus new variant – genomics researcher answers key questions
New research published recently could soon offer law enforcement another valuable crime scene tool—a quick and accurate way to distinguish human blood from animal blood.
In a proof-of-concept study researchers used laser technology to rapidly differentiate human blood samples from nearly a dozen animal species.
This could prove to be key in car crash investigations when the suspect is unsure if a human or animal was struck.
technique relies on Raman spectroscopy, which works by shining a laser on a dry blood sample and measuring the interaction. No two samples produce the same results, offering a unique measurement (similar to a fingerprint). The results are instantaneous and do not destroy the sample, preserving it for future testing.
In the new study researchers used attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy, a complementary technique to Raman spectroscopy, on 15 human blood samples and a total of 89 cat, dog, rabbit, horse, cow, pig, opossum and raccoon blood samples. Although each sample appeared nearly identical to the naked eye, the ATR FT-IR spectroscopy analysis, coupled with advanced statistics, was able to classify them as human or animal with 100 percent accuracy.
Samples from three other species—deer, elk and ferret—were included to further test the statistical model, and were all correctly classified.
Ewelina Mistek-Morabito et al. Discrimination between human and animal blood by attenuated total reflection Fourier transform-infrared spectroscopy, Communications Chemistry (2020). DOI: 10.1038/s42004-020-00424-8
https://phys.org/news/2020-12-forensic-chemist-laser-technique-dist...
Why do corona viruses become more active in winter?
A new study tested how temperatures and humidity affect the structure of individual SARS-Cov-2 virus-like particles on surfaces. They found that just moderate temperature increases broke down the virus' structure, while humidity had very little impact. In order to remain infectious, the SARS-Cov-2 membrane needs a specific web of proteins arranged in a particular order. When that structure falls apart, it becomes less infectious. The findings suggest that as temperatures begin to drop, particles on surfaces will remain infectious longer.
This is the first study to analyze the mechanics of the virus on an individual particle level, but the findings agree with large-scale observations of other coronaviruses that appear to infect more people during the winter months.
Temperature makes a huge difference, and that's what the researchers saw. To the point where the packaging of the virus was completely destroyed by even moderate temperature increases. They
hey tested the virus-like particles on glass surfaces under both dry and humid conditions. Using atomic force microscopy they observed how, if at all, the structures changed. The scientists exposed samples to various temperatures under two conditions: with the particles inside a liquid buffer solution, and with the particles dried out in the open. In both liquid and bare conditions, elevating the temperature to about 93 degrees F for 30 minutes degraded the outer structure. The effect was stronger on the dry particles than on the liquid-protected ones. In contrast, surfaces at about 71 degrees F caused little to no damage, suggesting that particles in room temperature conditions or outside in cooler weather will remain infectious longer.
They saw very little difference under levels of humidity on surfaces, however the scientists stress that humidity likely does matter when the particles are in the air by affecting how fast the aerosols dry out. The research team is continuing to study the molecular details of virus-like particle degradation.
A. Sharma et al, Structural stability of SARS-CoV-2 virus like particles degrades with temperature, Biochemical and Biophysical Research Communications (2020). DOI: 10.1016/j.bbrc.2020.11.080
** https://medicalxpress.com/news/2020-12-sars-cov-like-particles-sens...
In recent years, neuroscientists have been trying to understand the neural underpinnings of social behaviors and cognition. Studies on animal species, including primates and rodents, have identified a number of brain regions and neural circuits that may underpin social behaviors.
Researchers a have been conducting extensive research investigating the roles of the medial prefrontal cortex and the amygdala in social decision-making, particularly focusing on the interactions between different brain regions in the prefrontal-amygdala pathways. In a recent paper published in Nature Neuroscience, the researchers reviewed and summarized the evidence gathered in past studies that examined the neural mechanisms of social decision-making in humans, non-human primates and rodents.
Overall, the findings reviewed the researchers highlight the crucial role of interactions between the medial prefrontal cortex and amygdala in the social cognition of a wide variety of animal species. The medial prefrontal cortex has previously been found to contribute to a number of sensorimotor, cognitive and emotional processes, while the amygdala is a region deep within the brain that integrates a number of emotions, emotional reactions and motivations.
Some recent studies also revealed that neural ensembles involved in the processing of information that is both related and unrelated to social communication can interact with one another. These interactions appear to facilitate or attenuate social functions, increasing or decreasing their prevalence over non-social functions.
Prefrontal-amygdala circuits in social decision-making. Nature Neuroscience (2020). DOI: 10.1038/s41593-020-00738-9
https://medicalxpress.com/news/2020-12-exploring-role-prefrontal-am...
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!