SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 4 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

Culture is overtaking genetics in shaping human evolution, some researchers argue

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply

Research suggests that cultural evolution has become increasingly influential, sometimes even outstripping the rate and impact of genetic evolution in humans due to culture's rapid, socially learned,…Continue

The very certainty that science progresses with time should be the basis for trust, not the other way round.

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Sunday. 1 Reply

Q: Why do people say you can't trust science because it changes, and how does that contrast with religious beliefs?Krishna: “Because it changes” - if you don’t understand why the changes occur, you…Continue

Maternal gut microbiome composition and preterm births

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Sep 11. 1 Reply

Maternal gut microbiome composition may be linked to preterm birthsPeople associate several things regarding pregnancy to eclipses and other natural phenomenon. They also associate them with papaya…Continue

Our understanding of lightning has been driven by fear and shaped by curiosity

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Sep 9. 1 Reply

Playwright Tom Stoppard, in "Rosencrantz and Guildenstern are Dead," provides one of the…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on February 3, 2021 at 11:19am

Twisted van der Waals materials as a new platform to realize exotic...

Researchers from the MPSD, the RWTH Aachen University and the Flatiron Institute, Columbia University (both in the U.S.) and part of the Max Planck—New York City Center for Non-equilibrium Quantum Phenomena have provided a fresh perspective on the potential of twisted van der Waals materials for realizing novel and elusive states of matter and providing a unique materials-based quantum simulation platform.

Comment by Dr. Krishna Kumari Challa on February 3, 2021 at 8:54am

Say goodbye to the dots and dashes to enhance optical storage media

Innovators have created technology aimed at replacing Morse code with colored "digital characters" to modernize optical storage. They are confident the advancement will help with the explosion of remote data storage during and after the COVID-19 pandemic.

Morse code has been around since the 1830s. The familiar dots and dashes system may seem antiquated given the amount of information needed to be acquired, digitally archived and rapidly accessed every day. But those same basic dots and dashes are still used in many optical media to aid in storage.

A new technology developed at Purdue is aimed at modernizing the optical digital storage technology. Rather than using the traditional dots and dashes as commonly used in these technologies, the  innovators encode information in the angular position of tiny antennas, allowing them to store more data per unit area.

The  greatly increases because it is only defined by the resolution of the sensor by which you can determine the angular positions of antennas. They mapped the antenna angles into colors, and the colors are decoded.

This advancement allows for more data to be stored and for that data to be read at a quicker rate. The research is published in Laser & Photonics Reviews.

 Maowen Song et al, Enabling Optical Steganography, Data Storage, and Encryption with Plasmonic Colors, Laser & Photonics Reviews (2021). DOI: 10.1002/lpor.202000343

https://phys.org/news/2021-02-goodbye-dots-dashes-optical-storage.h...

Comment by Dr. Krishna Kumari Challa on February 3, 2021 at 8:41am

A new way to make wood transparent, stronger and lighter than glass

A team of researchers at the University of Maryland, has found a new way to make wood transparent. In their paper published in the journal Science Advances, the group describes their process and why they believe it is better than the old process.

Qinqin Xia et al. Solar-assisted fabrication of large-scale, patternable transparent wood, Science Advances (2021). DOI: 10.1126/sciadv.abd7342

https://phys.org/news/2021-02-wood-transparent-stronger-lighter-gla...

**

Comment by Dr. Krishna Kumari Challa on February 3, 2021 at 8:38am

An origami-inspired medical patch for sealing internal injuries

Many surgeries today are performed via minimally invasive procedures, in which a small incision is made and miniature cameras and surgical tools are threaded through the body to remove tumors and repair damaged tissues and organs. The process results in less pain and shorter recovery times compared to open surgery.

While many procedures can be performed in this way, surgeons can face challenges at an important step in the process: the sealing of internal wounds and tears.

The bioadhesives currently used in minimally invasive surgeries are available mostly as biodegradable liquids and glues that can be spread over damaged tissues. When these glues solidify, however, they can stiffen over the softer underlying surface, creating an imperfect seal. Blood and other biological fluids can also contaminate glues, preventing successful adhesion to the injured site. Glues can also wash away before an injury has fully healed, and, after application, they can also cause inflammation and scar tissue formation.

Taking inspiration from origami, MIT engineers have now designed a medical patch that can be folded around minimally invasive  and delivered through airways, intestines, and other narrow spaces, to patch up internal injuries. The patch resembles a foldable, paper-like film when dry. Once it makes contact with wet tissues or organs, it transforms into a stretchy gel, similar to a contact lens, and can stick to an injured site.

Given the limitations of current designs, the team aimed to engineer an alternative that would meet three functional requirements. It should be able to stick to the wet surface of an injured site, avoid binding to anything before reaching its destination, and once applied to an injured site resist bacterial contamination and excessive inflammation.

The team's design meets all three requirements, in the form of a three-layered patch. The middle layer is the main bioadhesive, made from a hydrogel material that is embedded with compounds called NHS esters. When in contact with a wet surface, the adhesive absorbs any surrounding water and becomes pliable and stretchy, molding to a tissue's contours. Simultaneously, the esters in the adhesive form strong covalent bonds with compounds on the tissue surface, creating a tight seal between the two materials. 

This could be used to repair a perforation from a coloscopy, or seal solid organs or  after a trauma or elective surgical intervention. Instead of having to carry out a full open surgical approach, one could go from the inside to deliver a patch to seal a wound at least temporarily and maybe even long-term.

In contrast to existing surgical adhesives, the team's new tape is designed to resist contamination when exposed to bacteria and bodily fluids. Over time, the patch can safely biodegrade away. The team has published its results in the journal Advanced Materials.

Sarah J. Wu et al. A Multifunctional Origami Patch for Minimally Invasive Tissue Sealing, Advanced Materials (2021). DOI: 10.1002/adma.202007667

https://phys.org/news/2021-02-origami-inspired-medical-patch-intern...

Comment by Dr. Krishna Kumari Challa on February 2, 2021 at 11:59am

A new treatment to help people with a spinal cord injury

Comment by Dr. Krishna Kumari Challa on February 2, 2021 at 11:59am

A call for a global ban on lead paint

Once lead paint is on a wall, it becomes an expensive problem to fix. In impoverished settings, be they neighborhoods in Philadelphia or developing nations globally, remediation can be prohibitively costly.

Branches and treetops can reduce greenhouse gas emission from heavy...

New research from University of Gävle shows that forest residues can generate large amounts of biofuel, and, in the long run, reduce greenhouse gas emission by 88-94% from heavy transport on Swedish roads.

Water disinfection with ozone

While chlorine and ultraviolet light are the standard means of disinfecting water, ozone is equally effective in killing germs. To date, ozone has only been used as an oxidation agent for treating water in large plants. Now, however, a project consortium from Schleswig-Holstein is developing a miniaturized ozone generator for use in smaller applications such as water dispensers or small domestic appliances. The Fraunhofer Institute for Silicon Technology ISIT has provided the sensor chip and electrode substrates for the electrolysis cell.

Comment by Dr. Krishna Kumari Challa on February 2, 2021 at 10:40am

Virtual conference CO2 emissions quantified in new study

The virtual conferencing that has replaced large, in-person gatherings in the age of COVID-19 represents a drastic reduction in carbon emissions, but those online meetings still come with their own environmental costs, new research from the University of Michigan shows.

The research offers a framework for analyzing and tallying the  of an online conference based on factors that include everything from  used by servers and monitors to the resources used to manufacture and distribute the computers involved.

Individuals could skip features like gallery view, disable HD video and repair instead of replace computers to extend their useful lifetimes.

Grant Faber. A framework to estimate emissions from virtual conferences, International Journal of Environmental Studies (2021). DOI: 10.1080/00207233.2020.1864190

https://phys.org/news/2021-02-virtual-conference-co2-emissions-quan...

Comment by Dr. Krishna Kumari Challa on February 2, 2021 at 10:34am

Lactobacillus manipulates bile acids to create favorable gut environment

New research  reveals that probiotic Lactobacillus bacteria use enzymes situationally to manipulate bile acids and promote their own survival in the gut. These findings further elucidate the complicated relationship between bile acids and gut bacteria and could eventually enable researchers to design lactobacilli with therapeutic properties, thereby engineering a healthier human gut environment.

Bile acids are key players in digestion and overall gut health. Produced in the liver and released after we eat, these acids not only break down cholesterol and help regulate fat absorption, they also have a huge impact on what types of bacteria colonize the gut.

As bile acids move through the gut, they are initially chemically modified through the addition of an amino acid (frequently glycine or taurine), creating a complex "conjugated" bile acid pool. Some  have enzymes, called bile salt hydrolases (BSHs), which can cleave or "deconjugate" these  from the bile acids, allowing other bacteria to further transform the bile acids as they continue through the colon. These transformations affect the bile acids' toxicity, which in turn affects the ability of different bacteria to survive in the gut.

The assumed relationship was that probiotic bacteria like Lactobacillus have BSHs that just deconjugate the bile acid, rendering it less toxic and allowing the bacteria to survive.

The interplay between bile and bacteria has a huge impact on their ability to live, thrive or die in a very competitive environment.

 Matthew H. Foley el al., "Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization," PNAS (2021). www.pnas.org/cgi/doi/10.1073/pnas.2017709118

--

It was found that bile acid toxicity was not merely dependent upon whether the bile acid was conjugated or deconjugated by a BSH; rather, the relationships were dependent upon the type of bile acid, the bacteria being acted upon, and which BSH was present.

https://phys.org/news/2021-02-lactobacillus-bile-acids-favorable-gu...

Comment by Dr. Krishna Kumari Challa on February 2, 2021 at 10:29am

Marine organisms use previously undiscovered receptors to detect, respond to light

Just as plants and animals on land are keenly attuned to the hours of sunlight in the day, life in the oceans follows the rhythms of the day, the seasons and even the moon. A new study finds the biological light switches that make this possible.

Single-celled organisms in the open ocean use a diverse array of genetic tools to detect light, even in tiny amounts, and respond.

If you look in the ocean environment, all these different organisms have this day-night cycle. They are very in tune with each other, even as they get moved around. How do they know when it's day? How do they know when it's night?

By analyzing RNA filtered out of  collected throughout the day and night, the study identifies four main groups of photoreceptors, many of them new. This genetic activity uses light to trigger changes in the metabolism, growth, cell division, movements and death of marine organisms.

The discovery of these new genetic "light switches" could also aid in the field of optogenetics, in which a cell's function can be controlled with light exposure. Today's optogenetic tools are engineered by humans, but versions from nature might be more sensitive or better detect light of particular wavelengths, the researchers think.

Sacha N. Coesel el al., "Diel transcriptional oscillations of light-sensitive regulatory elements in open-ocean eukaryotic plankton communities," PNAS (2021). www.pnas.org/cgi/doi/10.1073/pnas.2011038118

https://phys.org/news/2021-02-marine-previously-undiscovered-recept...

Comment by Dr. Krishna Kumari Challa on February 2, 2021 at 10:24am

Part 2

investigated whether sidewinders' skin might also play a role in their unique movement style.

They focused on three species of sidewinders, all of them vipers, in residence at zoos: The sidewinder rattlesnake (Crotalus cerastes), found in the deserts of the Southwestern United States and northern Mexico; and the Saharan horned viper (Cerastes cerastes) and the Saharan sand viper (Cerastes vipera), both from the deserts of north Africa.

Skins shed from the sidewinders were collected and scanned with atomic force microscopy, a technique that provides resolution at the atomic level, on the order of fractions of a nanometer. For comparison, they also scanned  skins shed from non-sidewinders.

As expected, the microscopy revealed tiny, head-to-tail pointing spikes on the skin of the non-sidewinders. Previous research had identified these micro spikes on a variety of other slithering snakes.

The current study, however, found that the skin of sidewinders is different. The two African sidewinders had micro pits on their bellies and no spikes. The skin of the sidewinder rattlesnake was also studded with tiny pits, along with a few, much smaller, spikes—although far fewer spikes than those of the slithering snakes.

The researchers created a  to test how these different structures affect frictional interactions with a surface. The model showed that head-to-tail pointing spikes enhance the speed and distance of forward undulation but are detrimental to sidewinding.

The model also showed that the uniform, non-directional structure of the round pits enhanced sidewinding, but was not as efficient as spikes for forward undulation.

The research provides snapshots at different points in time of convergent evolution—when different species independently evolve similar traits as a result of having to adapt to similar environments.

Jennifer M. Rieser el al., "Functional consequences of convergently evolved microscopic skin features on snake locomotion," PNAS (2021). www.pnas.org/cgi/doi/10.1073/pnas.2018264118

https://phys.org/news/2021-02-physics-snakeskin-sidewinding.html?ut...

 

Members (22)

 
 
 

© 2025   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service