Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 1 hour ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 1 hour ago. 1 Reply 0 Likes
Q: Why don't we see mentally challenged animals?Krishna:Cognitive specialization makes cross-species comparisons more complex, while potentially identifying human cognitive uniqueness that is…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 21 hours ago. 15 Replies 2 Likes
What might happen when you take lots of medicines...One of our uncles died of liver cirrhosis ten years back. He never touched alcohol in his life. He didn't have any viral infection to cause this.…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Q: The fact that I was born because I never existed in the first place suggests that, if I never existed after death, I may eventually exist again in the future. But what about the uncertainty of…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 1 Reply 0 Likes
Q: Humans are thousands times more intelligent and prudent than animals and birds. But why do animals and birds sense natural disasters, earthquakes and storms before they occur? Why don't humans…Continue
Comment
3 scientists win Nobel physics prize for black hole research
Three scientists won the Nobel Prize in physics Tuesday for advancing our understanding of Krishna (means ‘black’ in Sanskrit :)) holes.
Roger Penrose, Reinhard Genzel and Andrea Ghez explained to the world these dead ends of the cosmos that devour light and even time. Staples of both science fact and fiction, black holes are still not completely understood but are deeply connected, somehow, to the creation of galaxies, where the stars and life exist.
Penrose, of the University of Oxford, received half of the prize for discovering that Albert Einstein's general theory of relativity predicts the formation of black holes.
Announcement of the 2020 Nobel Prize in Physics
Post-viral fatigue syndrome- the condition affecting some COVID-19 survivors
https://theconversation.com/what-is-post-viral-fatigue-syndrome-the...
https://www.the-scientist.com/features/t-cells-and-neurons-talk-to-...
--
An expert on airborne virus transmission explains the risks of talking loudly without wearing a mask in an indoor environment
https://www.scientificamerican.com/article/how-trump-could-have-exp...
--
https://theconversation.com/we-estimate-there-are-up-to-14-million-...
Microplastics on the seafloor : research suggests there’s a staggering 8-14 million tonnes of it
Here's The Physics
Numerous animals may be vulnerable to SARS-CoV-2, the virus that causes COVID-19, according to a large study modelling how the virus might infect different animals' cells, led by UCL researchers.
The study, published in Scientific Reports, reports evidence that 26 animals regularly in contact with people may be susceptible to infection.
The researchers investigated how the spike protein from SARS-CoV-2 could interact with the ACE2 protein it attaches to when it infects people.
The focus of the investigation was whether mutations in the ACE2 protein in 215 different animals, that make it different from the human version, would reduce the stability of the binding complex between the virus protein and host protein. Binding to the protein enables the virus to gain entry into host cells; while it is possible the virus might be able to infect animals via another pathway, it is unlikely based on current evidence that the virus could infect an animal if it cannot form a stable binding complex with ACE2.
The researchers found that for some animals, such as sheep and great apes (chimpanzee, gorilla, orangutan, and bonobo, many of which are endangered in the wild), the proteins would be able to bind together just as strongly as they do when the virus infects people. Some of the animals, such as sheep, have not yet been studied with infection tests, so this does not confirm that the animal can indeed be infected.
Scientific Reports (2020). DOI: 10.1038/s41598-020-71936-5
https://phys.org/news/2020-10-dozens-mammals-susceptible-sars-cov-....
Applying a temperature gradient and a charge current to an electrical conductor leads to the release and absorbtion of heat. This is called the Thomson effect. In a first, researchers have directly observed the magneto-Thomson effect, which is the magnetic-field-induced modulation of the Thomson effect. This success may contribute to the development of new functions and technologies for thermal energy management and to advances in fundamental physics and materials .
science on magneto-thermoelectric conversion.
Kelly Morrison et al. Thermal Imaging of the Thomson Effect, Physics (2020). DOI: 10.1103/Physics.13.137
https://phys.org/news/2020-10-world-magneto-thomson-effect.html?utm...
Using a novel technique, scientists have found evidence for a quantum spin liquid, a state of matter that is promising as a building block for the quantum computers of tomorrow.
Researchers discovered the exciting behavior while studying the so-called electron spins in the compound ruthenium trichloride. The findings show that electron spins interact across the material, effectively lowering the overall energy. This type of behaviour—consistent with a quantum spin liquid—was detected in ruthenium trichloride at high temperatures and in high magnetic fields.
K. A. Modic et al, Scale-invariant magnetic anisotropy in RuCl3 at high magnetic fields, Nature Physics (2020). DOI: 10.1038/s41567-020-1028-0
https://phys.org/news/2020-10-scientists-evidence-exotic-state-cand...
Long known as the hardest of all natural materials, diamonds are also exceptional thermal conductors and electrical insulators. Now, researchers have discovered a way to tweak tiny needles of diamond in a controlled way to transform their electronic properties, dialing them from insulating, through semiconducting, all the way to highly conductive, or metallic. This can be induced dynamically and reversed at will, with no degradation of the diamond material.
The research may open up a wide array of potential applications, including new kinds of broadband solar cells, highly efficient LEDs and power electronics, and new optical devices or quantum sensors.
The methods demonstrated in this work could be applied to a broad range of other semiconductor materials of technological interest in mechanical, microelectronics, biomedical, energy and photonics applications, through strain engineering.
Zhe Shi el al., "Metallization of diamond," PNAS (2020). www.pnas.org/cgi/doi/10.1073/pnas.2013565117
https://phys.org/news/2020-10-scientists-electrifying-diamond.html?...
When the brain forms a memory of a new experience, neurons called engram cells encode the details of the memory and are later reactivated whenever we recall it. A new study reveals that this process is controlled by large-scale remodeling of cells' chromatin.
This remodeling, which allows specific genes involved in storing memories to become more active, takes place in multiple stages spread out over several days. Changes to the density and arrangement of chromatin, a highly compressed structure consisting of DNA and proteins called histones, can control how active specific genes are within a given cell.
This paper is the first to really reveal this very mysterious process of how different waves of genes become activated, and what is the epigenetic mechanism underlying these different waves of gene expression.
Engram cells are found in the hippocampus as well as other parts of the brain. Many recent studies have shown that these cells form networks that are associated with particular memories, and these networks are activated when that memory is recalled. However, the molecular mechanisms underlying the encoding and retrieval of these memories are not well-understood.
Neuroscientists know that in the very first stage of memory formation, genes known as immediate early genes are turned on in engram cells, but these genes soon return to normal activity levels.
The formation and preservation of memory is a very delicate and coordinated event that spreads over hours and days, and might be even months—we don't know for sure," Marco says. "During this process, there are a few waves of gene expression and protein synthesis that make the connections between the neurons stronger and faster."
Tsai and Marco hypothesized that these waves could be controlled by epigenomic modifications, which are chemical alterations of chromatin that control whether a particular gene is accessible or not. Previous studies from Tsai's lab have shown that when enzymes that make chromatin inaccessible are too active, they can interfere with the ability to form new memories. Many of the genes turned on during memory recall are involved in promoting protein synthesis at the synapses, helping neurons strengthen their connections with other neurons. The researchers also found that the neurons' dendrites—branched extensions that receive input from other neurons—developed more spines, offering further evidence that their connections were further strengthened.
The study is the first to show that memory formation is driven by epigenomically priming enhancers to stimulate gene expression when a memory is recalled.
Mapping the epigenomic and transcriptomic interplay during memory formation and recall in the hippocampal engram ensemble, Nature Neuroscience (2020). DOI: 10.1038/s41593-020-00717-0 , www.nature.com/articles/s41593-020-00717-0
https://medicalxpress.com/news/2020-10-neuroscientists-molecular-me...
Using specialized nanoparticles, MIT engineers have developed a way to turn off specific genes in cells of the bone marrow, which play an important role in producing blood cells. These particles could be tailored to help treat heart disease or to boost the yield of stem cells in patients who need stem cell transplants, the researchers say.
This type of genetic therapy, known as RNA interference, is usually difficult to target to organs other than the liver, where nanoparticles would tend to accumulate. The MIT researchers were able to modify their particles in such a way that they would accumulate in the cells found in the bone marrow. "If we can get these particles to hit other organs of interest, there could be a broader range of disease applications to explore, and one that we were really interested in this paper was the bone marrow. The bone marrow is a site for hematopoiesis of blood cells, and these give rise to a whole lineage of cells that contribute to various types of diseases. In a study of mice, the researchers showed that they could use this approach to improve recovery after a heart attack by inhibiting the release of bone marrow blood cells that promote inflammation and contribute to heart disease. -- RNA interference is a strategy that could potentially be used to treat a variety of diseases by delivering short strands of RNA that block specific genes from being turned on in a cell. So far, the biggest obstacle to this kind of therapy has been the difficulty in delivering it to the right part of the body. When injected into the bloodstream, nanoparticles carrying RNA tend to accumulate in the liver, which some biotech companies have taken advantage of to develop new experimental treatments for liver disease.
Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche, Nature Biomedical Engineering (2020). DOI: 10.1038/s41551-020-00623-7 , www.nature.com/articles/s41551-020-00623-7
https://phys.org/news/2020-10-nanoparticles-genes-bone-marrow-cells...
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!