Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 5 minutes ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 20 hours ago. 1 Reply 0 Likes
Image source: WIKIPEDIACoconut trees are iconic plants found across the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Pathogen transmission can be modeled in three stages. In Stage 1, the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Monday. 1 Reply 0 Likes
Q: Science does not understand energy and the supernatural world because science only studies the material world. Is that why scientists don't believe in magic, manifestation or evil eye? Why flatly…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Sunday. 1 Reply 0 Likes
Q: Why do I have four horizontal lines on my fingers? My child has the same thing.Krishna: You should have posted pictures of your fingers. I would like to see and then guess what condition it really…Continue
Comment
The painful toxins wielded by a giant stinging tree are surprisingly similar to the venom found in spiders and cone snails researchers have found.
The Gympie-Gympie stinging tree is one of the world's most venomous plants and causes extreme long-lasting pain. Researchers found a new family of toxins, which they've named 'gympietides' after the Gympie-Gympie stinging tree.
The tree's scientific name is Dendrocnide which literally means 'stinging tree'—a member of the nettle family. Like other stinging plants such as nettles, the giant stinging tree is covered in needle-like appendages called trichomes that are around five millimetres in length—the trichomes look like fine hairs, but actually act like hypodermic needles that inject toxins when they make contact with skin.
Small molecules in the trichomes such as histamine, acetylcholine and formic acid have been tested but injecting these does not cause the severe and long-lasting pain of the stinging tree, suggesting that there was an unidentified neurotoxin to be found.
Although they come from a plant, the gympietides are similar to spider and cone snail toxins in the way they fold into their 3-D molecular structures and target the same pain receptors—this arguably makes the Gympie-Gympie tree a truly "venomous" plant. The long-lasting pain from the stinging tree may be explained by the gympietides permanently changing the sodium channels in the sensory neurons, not due to the fine hairs getting stuck in the skin.
By understanding how this toxin works, scientists hope to provide better treatment to those who have been stung by the plant, to ease or eliminate the pain.
With these toxins from both plants and animals having a shared method of causing pain, it begs the question, when and how did these toxins evolve?
The researchers point to two possibilities for the toxin's evolution from either an ancestral gene in an ancient shared ancestor or convergent evolution, where nature re-invents the most fitting structure to fit a common purpose.
E.K. Gilding el al., "Neurotoxic peptides from the venom of the giant Australian stinging tree," Science Advances (2020). advances.sciencemag.org/lookup … .1126/sciadv.abb8828
https://phys.org/news/2020-09-native-tree-toxins-pain-spiders.html?...
In 2017, researchers discovered that the rare Dantu blood variant, which is found regularly only in parts of East Africa, provides some degree of protection against severe malaria.
The secret of how the Dantu genetic blood variant helps to protect against malaria has been revealed for the first time by scientists now. They found that red blood cells in people with the rare Dantu blood variant have a higher surface tension that prevents them from being invaded by the world's deadliest malaria parasite, Plasmodium falciparum.
Analysis of the characteristics of the red blood cell samples indicated that the Dantu variant created cells with a higher surface tension—like a drum with a tighter skin. At a certain tension, malaria parasites were no longer able to enter the cell, halting their lifecycle and preventing their ability to multiply in the blood. The Dantu blood group has a novel 'chimeric' protein that is expressed on the surface of red blood cells, and alters the balance of other surface proteins.
This finding could also be significant in the wider battle against malaria. Because the surface tension of human red blood cells increases as they age, it may be possible to design drugs that imitate this natural process to prevent malaria infection or reduce its severity.
Red blood cell tension protects against severe malaria in the Dantu blood group, Nature (2020). DOI: 10.1038/s41586-020-2726-6 , www.nature.com/articles/s41586-020-2726-6
https://medicalxpress.com/news/2020-09-dantu-blood-group-malariaand...
the use of viral vectors that were developed by identifying short sequences of DNA restricting the expression of a virus onto the desired target cell type.
Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans. Nature Neuroscience (2020). DOI: 10.1038/s41593-020-0692-9.
https://medicalxpress.com/news/2020-09-strategy-viral-interneurons-...
--
DNA molecules express heredity through genetic information. However, in the past few years, scientists have discovered that DNA can conduct electrical currents. This makes it an interesting candidate for roles that nature did not intend for this molecule, such as smaller, faster and cheaper electric circuits in electronic devices, and to detect the early stages of diseases like cancer and COVID-19.
The most surprising recent finding was that the current passes through the DNA backbone, contrary to prior assumptions in the scientific community that the current flowed along DNA base pairs.
Roman Zhuravel et al. Backbone charge transport in double-stranded DNA, Nature Nanotechnology (2020). DOI: 10.1038/s41565-020-0741-2
https://phys.org/news/2020-09-harnessing-dna-molecules-disease-elec...
Keeping MAX quiet with Chevrons.
will the tropics eventually become uninhabitable?
https://theconversation.com/climate-explained-will-the-tropics-even...
--
A computer can guess more than 100,000,000,000 passwords per second. Still think yours is secure?
https://theconversation.com/a-computer-can-guess-more-than-100-000-...
--
https://www.sciencenews.org/article/earth-rarest-diamonds-form-prim...
--
Athletes show signs of possible heart injury after COVID-19
A small study found indicators of inflammation in images of some athletes’ hearts
https://www.sciencenews.org/article/covid19-coronavirus-heart-injur...
--
https://phys.org/news/2020-09-reveals-enormous-planet-quickly-orbit...
--
https://www.quora.com/q/sciencecommunication/New-finding-A-lack-of-...; - check &&
https://phys.org/news/2020-09-qa-multiple-benefits-world-air.html?u...
https://www.quora.com/q/sciencecommunication/The-multiple-benefits-... -- check%%
Human white blood cells, known as leukocytes, swim using a newly described mechanism called molecular paddling, researchers report
This microswimming mechanism could explain how both immune cells and cancer cells migrate in various fluid-filled niches in the body, for good or for harm.
Cells have evolved different strategies to migrate and explore their environment. For example, sperm cells, microalgae, and bacteria can swim through shape deformations or by using a whip-like appendage called a flagellum. By contrast, somatic mammalian cells are known to migrate by attaching to surfaces and crawling. It is widely accepted that leukocytes cannot migrate on 2-D surfaces without adhering to them.
A prior study reported that certain human white blood cells called neutrophils could swim, but no mechanism was demonstrated. Another study showed that mouse leukocytes could be artificially provoked to swim. It is widely thought that cell swimming without a flagellum requires changes in cell shape, but the precise mechanisms underlying leukocyte migration have been debated.
This new study provide experimental and computational evidence that human leukocytes can migrate on 2-D surfaces without sticking to them and can swim using a mechanism that does not rely on changes in cell shape. The cells paddle using transmembrane proteins, which span the cell membrane and protrude outside the cell. The researchers show that membrane treadmilling—rearward movement of the cell surface—propels leukocyte migration in solid or liquid environments, with and without adhesion.
Laurene Aoun et al, Amoeboid Swimming Is Propelled by Molecular Paddling in Lymphocytes, Biophysical Journal (2020). DOI: 10.1016/j.bpj.2020.07.033
https://phys.org/news/2020-09-human-white-blood-cells-molecular.htm...
Microbial biomarkers reveal a hydrothermally active landscape at Olduvai Gorge at the dawn of the Acheulean, 1.7 Ma, Proceedings of the National Academy of Sciences (2020). DOI: 10.1073/pnas.2004532117 , www.pnas.org/content/early/2020/09/14/2004532117
https://phys.org/news/2020-09-early-ancestors-food-hot.html?utm_sou...
--
https://medicalxpress.com/news/2020-09-molecular-basis-underlying-c...
--
https://medicalxpress.com/news/2020-09-reward-similar-paths-mouse-b...
--
Why a vaccine can provide better immunity than an actual infection
Researchers have found that freshly hatched tortoises tend to orient themselves toward objects that resemble a face.
Anecdotal as well as lab research has shown that newly born humans tend to orient their faces toward the face of their mother. Likewise, other animals have been found to do the same. Social scientists have shown that the behavior is hereditary and have theorized that it is part of bonding. In this new effort, the researchers found evidence that suggests face orienteering goes deeper than that, and perhaps goes farther back in evolution than has been thought—to an ancestor common to both humans and reptiles.
To test the possibility of face orienteering in reptiles, the researchers created simple face-like structures by pasting square black blocks onto a white plate, vaguely resembling eyes, nose and mouth. They also pasted the same sort of blocks in other ways on other plates in ways not resembling a face. They then set newly hatched tortoises in the vicinity of their creations and watched how they behaved. In all, the researchers tested 136 tortoises from five Testudo species. In tallying up their results, they found that the tortoise hatchlings oriented themselves toward the faces approximately 70% of the time. In sharp contrast, they showed no preference for any of the structures that did not resemble faces.
The researchers suggest their finding is notable because tortoises are notoriously antisocial creatures. They receive no care from their parents and avoid other tortoises when they see them. They also do not interact with animals of other species. Thus, their inclination to orient themselves toward a face suggests it originates in their genes. Prior research has shown that modern tortoises first appeared around 30 million years ago, which suggests that facial attraction may go back even farther in history—perhaps to a shared common ancestor of humans and reptiles.
Elisabetta Versace et al. Early preference for face-like stimuli in solitary species as revealed by tortoise hatchlings, Proceedings of the National Academy of Sciences (2020). DOI: 10.1073/pnas.2011453117
https://phys.org/news/2020-09-tortoise-hatchlings-resembling.html?u...
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!