Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 17 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 17 hours ago. 1 Reply 0 Likes
Q: Why do people say you can't trust science because it changes, and how does that contrast with religious beliefs?Krishna: “Because it changes” - if you don’t understand why the changes occur, you…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply 0 Likes
Maternal gut microbiome composition may be linked to preterm birthsPeople associate several things regarding pregnancy to eclipses and other natural phenomenon. They also associate them with papaya…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Playwright Tom Stoppard, in "Rosencrantz and Guildenstern are Dead," provides one of the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Sep 6. 1 Reply 0 Likes
Q: Why do some people find comfort in the idea of being "recycled" into nature rather than believing in an afterlife?Krishna: Because ‘"recycled" into nature’ is an evidence based fact and people…Continue
Comment
Why do corona viruses become more active in winter?
A new study tested how temperatures and humidity affect the structure of individual SARS-Cov-2 virus-like particles on surfaces. They found that just moderate temperature increases broke down the virus' structure, while humidity had very little impact. In order to remain infectious, the SARS-Cov-2 membrane needs a specific web of proteins arranged in a particular order. When that structure falls apart, it becomes less infectious. The findings suggest that as temperatures begin to drop, particles on surfaces will remain infectious longer.
This is the first study to analyze the mechanics of the virus on an individual particle level, but the findings agree with large-scale observations of other coronaviruses that appear to infect more people during the winter months.
Temperature makes a huge difference, and that's what the researchers saw. To the point where the packaging of the virus was completely destroyed by even moderate temperature increases. They
hey tested the virus-like particles on glass surfaces under both dry and humid conditions. Using atomic force microscopy they observed how, if at all, the structures changed. The scientists exposed samples to various temperatures under two conditions: with the particles inside a liquid buffer solution, and with the particles dried out in the open. In both liquid and bare conditions, elevating the temperature to about 93 degrees F for 30 minutes degraded the outer structure. The effect was stronger on the dry particles than on the liquid-protected ones. In contrast, surfaces at about 71 degrees F caused little to no damage, suggesting that particles in room temperature conditions or outside in cooler weather will remain infectious longer.
They saw very little difference under levels of humidity on surfaces, however the scientists stress that humidity likely does matter when the particles are in the air by affecting how fast the aerosols dry out. The research team is continuing to study the molecular details of virus-like particle degradation.
A. Sharma et al, Structural stability of SARS-CoV-2 virus like particles degrades with temperature, Biochemical and Biophysical Research Communications (2020). DOI: 10.1016/j.bbrc.2020.11.080
** https://medicalxpress.com/news/2020-12-sars-cov-like-particles-sens...
In recent years, neuroscientists have been trying to understand the neural underpinnings of social behaviors and cognition. Studies on animal species, including primates and rodents, have identified a number of brain regions and neural circuits that may underpin social behaviors.
Researchers a have been conducting extensive research investigating the roles of the medial prefrontal cortex and the amygdala in social decision-making, particularly focusing on the interactions between different brain regions in the prefrontal-amygdala pathways. In a recent paper published in Nature Neuroscience, the researchers reviewed and summarized the evidence gathered in past studies that examined the neural mechanisms of social decision-making in humans, non-human primates and rodents.
Overall, the findings reviewed the researchers highlight the crucial role of interactions between the medial prefrontal cortex and amygdala in the social cognition of a wide variety of animal species. The medial prefrontal cortex has previously been found to contribute to a number of sensorimotor, cognitive and emotional processes, while the amygdala is a region deep within the brain that integrates a number of emotions, emotional reactions and motivations.
Some recent studies also revealed that neural ensembles involved in the processing of information that is both related and unrelated to social communication can interact with one another. These interactions appear to facilitate or attenuate social functions, increasing or decreasing their prevalence over non-social functions.
Prefrontal-amygdala circuits in social decision-making. Nature Neuroscience (2020). DOI: 10.1038/s41593-020-00738-9
https://medicalxpress.com/news/2020-12-exploring-role-prefrontal-am...
https://www.sciencealert.com/astronomers-detect-the-first-potential...
**
--
S.A. Rice et al. Nitrogen recycling buffers against ammonia toxicity from skeletal m.... Nature Metabolism. Published online December 7, 2020. doi: 10.1038/s42255-020-00312-4.
https://www.sciencenews.org/article/arctic-squirrels-recycle-protei...
--
Magnetic fluids are used in many different areas, including medicine, electronics, mechanical engineering, ecology, etc. Such a wide range of applications is explained by a number of its useful properties. Researchers from Peter the Great St.Petersburg Polytechnic University (SPbPU) in collaboration with colleagues from Jiangsu Normal University (JSNU) discovered new effects in magnetic fluids, which will increase its effectiveness for medical purposes in future. The results were published in Springer Proceedings in Physics.
--
An especially counter-intuitive feature of quantum mechanics is that a single event can exist in a state of superposition—happening both here and there, or both today and tomorrow.
These ‘beetlebots’ keep flying, even after crashing into poles
Why are our tears salty?
Well, all fluids in our bodies have a little bit of salt in them. This salt is made into electricity to help our muscles contract and our brains to think. The amount of salt in our body fluids (like tears, sweat, and saliva) is about the same as the amount of salt in our blood — just under 1%, or about two teaspoons of salt per litre.
The saltiness of your tears can actually vary depending on what kind of tears your eyes are making.
That’s right, your eyes — or a part of your eyes called the lacrimal gland, to be precise — make three different types of tears. These are called basal tears, reflex tears and emotional tears.
Basal tears and reflex tears have more salt in them than emotional tears, which is important for keeping your eyes healthy. Emotional tears contain more of other things, including a hormone (a special type of chemical in your body) that works like a natural painkiller. This might help to explain why we sometimes feel better after having a good cry.
https://theconversation.com/curious-kids-why-are-our-tears-salty-15...
https://www.the-scientist.com/news-opinion/opinion-being-scientists...
University of Rhode Island hydrogeologist Thomas Boving and colleagues at EnChem Engineering Inc. are testing a proprietary new technology for quickly removing and destroying hazardous chemical compounds from soil and groundwater. If proven effective, the technology could soon be applied to cleaning up the abundant per- and polyfluoroalkyl substances, collectively referred to as PFAS and 'forever chemicals,' that contaminate drinking water supplies.
PFAS compounds have been in use for more than 60 years and are found in common household goods like non-stick cookware, stain-proof carpets and pizza boxes, as well as in firefighting foams and other industrial products. Because they do not break down easily in the environment, they find their way into human and animal tissues and can lead to many serious diseases.
First, they flushed the compounds out of the ground by pumping in a sugar molecule that has the ability to remove PFAS from the soil and groundwater. Then they pumped the solution out of the ground and hit it with a chemical oxidation process to destroy the compounds.
https://phys.org/news/2020-12-scientist-technology-chemicals.html?u...
**
"If you eat mussels, you eat microplastics."
A research team investigated the microplastic load of four mussel species which are particularly often sold as food in supermarkets from twelve countries around the world. The scientists now present their research results in the journal Environmental Pollution.
All the samples analyzed contained microplastic particles, and the researchers detected a total of nine different types of plastic. Polypropylene (PP) and polyethylene terephthalate (PET) were the most common types of plastic. Both are plastics ubiquitous to people's everyday lives all over the world. To make the analyses of different sized mussels comparable, one gram of mussel meat was used as a fixed reference. According to the study, one gram of mussel meat contained between 0.13 and 2.45 microplastic particles. Mussel samples from the North Atlantic and South Pacific were the most contaminated. Because mussels filter out microplastic particles from the water in addition to food particles, a microplastic investigation of the mussels allows indirect conclusions to be drawn about pollution in their respective areas of origin.
The microplastic particles detected in the mussels were of a size of between three and 5,000 micrometers, i.e. between 0.003 and five millimeters.
B.N. Vinay Kumar et al. Analysis of microplastics of a broad size range in commercially important mussels by combining FTIR and Raman spectroscopy approaches, Environmental Pollution (2020). DOI: 10.1016/j.envpol.2020.116147
https://phys.org/news/2020-12-consumed-species-mussels-microplastic...
Days when high profile European football matches are played are associated with more traffic accidents in Asia than days when less popular matches are played, finds a study in the Christmas issue of The BMJ.
One explanation may be that Asian drivers stay awake until the early hours of the morning to watch high profile football games and lose sleep as a result.
Football is viewed by more people worldwide than any other sport, but most high profile games are played in Europe, so fans who live outside Europe must watch these games at odd local times owing to differences in time zones.
Asian fans are the most affected, as games scheduled to start at 8 pm in Europe means fans in Beijing, Hong Kong, and Singapore have to stay up until 4 30 am to finish the game, while fans in Seoul and Tokyo have to stay up until 5 30 am.
Given that sleep deprivation is associated with poor attention management, slower reaction times, and impaired decision making, one theory is that drivers are more likely to be involved in traffic accidents on days when high profile football games air early in the morning.
If true, this would have important policy implications, as traffic accidents can result in considerable economic and medical costs.
After taking account of potentially influential factors such as driver age, gender and experience, weather conditions, time of year, and weekend versus weekday effects, the researchers found that days when high profile football games were aired also had higher than average traffic accidents in both Singapore and Taiwan.
Association of high profile football matches in Europe with traffic accidents in Asia: archival study, BMJ (2020). DOI: 10.1136/bmj.m4465
https://medicalxpress.com/news/2020-12-popular-european-football-ga...
--
Based on these figures, the researchers estimate that football games may be responsible for at least 371 accidents a year among taxi drivers in Singapore (this figure is likely to be much larger across all drivers in Singapore) and around 41,000 accidents per year among the Taiwanese general public.
In terms of annual economic losses, they estimate these to be more than €820,000 among Singapore taxi drivers and almost €14m among Taiwanese drivers and insurance companies, although they stress that these figures should be interpreted with caution.
This is an observational study, so can't establish cause, although the researchers were able to rule out many alternative explanations such as roadside conditions and driver characteristics. The researchers also point to some limitations, such as a lack of data on the severity of the accidents reported and being unable to compare match days against non-game days.
Nevertheless, they suggest that football's governing bodies could consider scheduling high profile games on Friday or Saturday evenings local European time (Saturday or Sunday early mornings local Asian time) when fans can sleep in immediately after watching games.
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!