Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 2 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 22 hours ago. 1 Reply 0 Likes
Why do type 2 diabetics sometimes become thin if their condition is not managed properly?Earlier we used to get this answer to the Q : Type 2 diabetics may experience weight loss and become thin due…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Movies and TV serials shaped how many people imagine a heart attack—someone clutching their chest and collapsing dramatically. But those portrayals are misleading and shouldn't be expected, say the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 13 Replies 0 Likes
Recent measles outbreak in the California state of the US ( now spread to other states too) tells an interesting story.Vaccines are not responsible for the woes people face but because of rejection…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 5 Replies 0 Likes
When I was a very young school girl, I still remember very well, my Dad used to tell me to bear the pain out and not to scream and cry whenever I hurt myself and was in severe pain. I never ever saw…Continue
Comment
The threat of serious deformation triggers a rapid escape reflex that enables cells to move away and squeeze out from tight spaces or crowded tissues.
In a new study researchers reveal that squeezing a cell to the point where its nucleus starts to stretch triggers the activation of motor proteins which in turn transform the cell's cytoskeleton so that it can flee a packed environment.
Each cell has a nucleus, and each nucleus has a membrane that separates the chromosomes from the rest of the cell. At a rest state, the nuclear membrane is saggy, akin to a loose shopping bag. Now researchers have found that when the nuclear membrane is squeezed, the wrinkles on its surface iron themselves out, instigating a cascade of events that transform the cytoskeleton and eventually aid the cell in escaping its crowded environment.
The nucleus measures shape changes for cellular proprioception to control dynamic cell behavior, Science (2020). DOI: 10.1126/science.aba2644
Study finds how body cells move within a tissue
https://phys.org/news/2020-10-nuclei-instigate-cells-crowded-spaces...
Science Pinpoints Global Metal Deposit Locations
Miners can find new deposits with less effort
--
**
https://www.the-scientist.com/news-opinion/decoy-cells-trick-sars-c...
https://www.the-scientist.com/news-opinion/electric-and-magnetic-fi...
An international team involving researchers based in Manchester (UK), Patna (India) and Zurich (Switzerland) has found new areas of arsenic contamination in drinking water in India. Their country-specific, country-wide model for well water arsenic in India has recently been published in the International Journal for Environmental Research and Public Health.
Their model confirms the known high probability of finding hazardous high arsenic well waters in northern India in the river basins of the Ganges and Brahmaputra. What is new and particularly concerning, is that the model also finds an elevated probability of high arsenic well waters in other Indian areas, where previously arsenic hazard was generally not considered to be a major concern—so much so that in many of these areas well water arsenic is not routinely checked.
These areas include parts of south-west and central India and are mostly areas underlain by sediments and sedimentary rocks.
The study suggests follow up to help better define specific areas in which action is required to reduce adverse public health outcomes from drinking high arsenic well waters. The study also highlights the importance of systematic testing of hazards, not just in known high hazard areas, but also through random sampling of all wells used for drinking water.
Joel Podgorski et al. Groundwater Arsenic Distribution in India by Machine Learning Geospatial Modeling, International Journal of Environmental Research and Public Health (2020). DOI: 10.3390/ijerph17197119
https://phys.org/news/2020-10-areas-arsenic-exposure-india.html?utm...
A new study of the Great Barrier Reef shows populations of its small, medium and large corals have all declined in the past three decades. Scientists found the number of small, medium and large corals on the Great Barrier Reef has declined by more than 50 percent since the 1990s.
The decline occurred in both shallow and deeper water, and across virtually all species—but especially in branching and table-shaped corals. These were the worst affected by record-breaking temperatures that triggered mass bleaching in 2016 and 2017.
Climate change is driving an increase in the frequency of reef disturbances such as marine heatwaves. 'There is no time to lose—we must sharply decrease greenhouse gas emissions ASAP if we want to protect them from more degradation and total loss', the researchers conclude.
Andreas Dietzel et al, Long-term shifts in the colony size structure of coral populations along the Great Barrier Reef, Proceedings of the Royal Society B: Biological Sciences (2020). DOI: 10.1098/rspb.2020.1432
https://phys.org/news/2020-10-great-barrier-reef-lost-corals.html?u...
----
Scientists have shown that viral infection is involved in coral bleaching—the breakdown of the symbiotic relationship between corals and the algae they rely on for energy.
After analyzing the viral metagenomes they found that bleached corals had a higher abundance of eukaryotic viral sequences, and non-bleached corals had a higher abundance of bacteriophage sequences. This gave the researchers the first quantitative evidence of a shift in viral assemblages between coral bleaching states.
Bacteriophage viruses infect and replicate within bacteria. Eukaryotic viruses infect non-bacterial organisms like animals.
In addition to having a greater presence of eukaryotic viruses in general, bleached corals displayed an abundance of what are called giant viruses. Known scientifically as nucleocytoplasmic large DNA viruses, or NCLDV, they are complex, double-stranded DNA viruses that can be parasitic to organisms ranging from the single-celled to large animals, including humans.
Giant viruses have been implicated in coral bleaching. Now scientists were able to generate the first draft genome of a giant virus that might be a factor in bleaching.
Adriana Messyasz et al, Coral Bleaching Phenotypes Associated With Differential Abundances of Nucleocytoplasmic Large DNA Viruses, Frontiers in Marine Science (2020). DOI: 10.3389/fmars.2020.555474
https://phys.org/news/2020-10-scientists-viruses-role-coral.html?ut...
Molecules that accumulate at the tip of chromosomes are known to play a key role in preventing damage to our DNA. Now, researchers have unraveled how these molecules home in on specific sections of chromosomes—a finding that could help to better understand the processes that regulate cell survival in aging and cancer.
Much like the aglet of a shoelace prevents the end of the lace from fraying, stretches of DNA called telomeres form protective caps at the ends of chromosomes. But as cells divide, telomeres become shorter, making the protective cap less effective. Once telomeres get too short, the cell stops dividing. Telomere shortening and malfunction have been linked to cell aging and age-related diseases, including cancer.
Scientists have known that RNA species called TERRA help to regulate the length and function of telomeres. Discovered in 2007 TERRA belongs to a class of molecules called noncoding RNAs, which are not translated into proteins but function as structural components of chromosomes. TERRA accumulates at chromosome ends, signaling that telomeres should be elongated or repaired.
However, it was unclear how TERRA got to the tip of chromosomes and remained there. "The telomere makes up only a tiny bit of the total chromosomal DNA, so the question is 'how does this RNA find its home. By visualizing TERRA molecules under a microscope, the researchers found that a short stretch of the RNA is crucial to bring it to telomeres. Further experiments showed that once TERRA reaches the tip of chromosomes, several proteins regulate its association with telomeres. Among these proteins, one called RAD51 plays a particularly important role. RAD51 is a well-known enzyme that is involved in the repair of broken DNA molecules. The protein also seems to help TERRA stick to telomeric DNA to form a so-called "RNA-DNA hybrid molecule". Scientists thought this type of reaction, which leads to the formation of a three-stranded nucleic acid structure, mainly happened during DNA repair. The new study shows that it can also happen at chromosome ends when TERRA binds to telomeres. The researchers also found that short telomeres recruit TERRA much more efficiently than long telomeres. Although the mechanism behind this phenomenon is unclear, the researchers hypothesize that when telomeres get too short, either due to DNA damage or because the cell has divided too many times, they recruit TERRA molecules. This recruitment is mediated by RAD51, which also promotes the elongation and repair of telomeres. "TERRA and RAD51 help to prevent accidental loss or shortening of telomeres. That's an important function."
Given the role of telomeres in health and disease, it will be important to see how the newly discovered mechanism—which was deduced from observations in living cells and reproduced in test tubes—is regulated in the very complex cellular environment.
RAD51-dependent recruitment of TERRA long noncoding RNA to telomeres through R-loops, Nature (2020). DOI: 10.1038/s41586-020-2815-6
https://phys.org/news/2020-10-scientists-home-mechanism-cells-prema...
Returning specific ecosystems that have been replaced by farming to their natural state in all continents worldwide would rescue the majority of land-based species of mammals, amphibians and birds under threat of extinction. Such measures would also soak up more than 465 billion tons of carbon dioxide, according to a new report released today. Protecting 30% of the priority areas identified in the study, together with protecting ecosystems still in their natural form, would reduce carbon emissions equivalent to 49% of all the carbon that has built up in our atmosphere over the last two centuries. Some 27 researchers from 12 countries contributed to the report, which assesses forests, grasslands, shrublands, wetlands and arid ecosystems.
By identifying precisely which destroyed ecosystems worldwide should be restored to deliver biodiversity and climate benefits at a low cost without impact on agricultural production, the study is the first of its kind to provide global evidence that where restoration takes place has the most profound impact on the achievement of biodiversity, climate and food security goals. According to the study, restoration can be 13 times more cost-effective when it takes place in the highest priority locations.
Global priority areas for ecosystem restoration, Nature (2020). DOI: 10.1038/s41586-020-2784-9
https://phys.org/news/2020-10-world-ecosystems-priority-areas-stave...
the mystery behind the mole’s wiggly star-shaped appendage (it helps the subterranean animal sense prey without using sight)
how “hangry” water shrews execute the fastest documented predatory attack by a mammal and how cockroaches resist becoming zombies during parasitoid wasp attacks (SN: 10/31/18).
the notion that a tentacled snake (Erpeton tentaculatum) might use the short appendages close to itsmouth to lure in nearby fish, just like snapping turtles dowith their tongues, turned out to be wrong. Instead, the tentacleshelp a snake sense a fish’s position in the water andknow when to attack. What’s more, the snakes have hackedtheir prey’s natural escape reflexes. In a fatal mistake, fishflee in the wrong direction — straight toward a snake’smouth — when duped by a twitch of the snake’s neck rightbefore the predator strikes.
Tentacled snakes are born knowing how to strike at prey rather than learning through failure you can’t “find enough superlatives to sum up these results.” A fight between a parasitoid wasp and a cockroach is like an “insect rodeo.” The wasp attacks a cockroach’s head in an attempt to lay an egg, but in defense the roach “bucks, jumps, and flails with all its might.”
https://www.sciencenews.org/article/book-great-adaptations-unravels...
You can check Great Adaptations on Amazon.com.
Japan’s white-spotted pufferfish are renowned for producing complex, ringed patterns in the sand. Now, 5,500 kilometers away in Australia, scientists have discovered what appear to be dozens more of these creations.
While conducting a marine life survey out on Australia’s North West Shelf near subsea gas infrastructure with an autonomous underwater vehicle, marine ecologist Todd Bond spotted a striking pattern on the seafloor, more than 100 meters deep. “Immediately, I knew what it was,” recounts Bond, of the University of Western Australia in Perth. Bond and his colleagues continued the survey, ultimately finding nearly two dozen more.
Until now, these undersea “crop circles” were found only off the coast of Japan. First spotted in the 1990s, it took two decades to solve the mystery of what created them. In 2011, scientists found the sculptors — the diminutive males of what was then a new species of Torquigener pufferfish. The patterns are nests, meticulously plowed over the course of days and decorated with shells to entice females to lay their eggs in the center.
https://www.sciencenews.org/article/pufferfish-mysterious-crop-circ...
Some peopel take multivitamins daily on the idea that they help improve overall health and potentially lower disease. Is their any science behind the health benefits of taking multivitamin supplements?
Multivitamins have their use for people with vitamin and mineral deficiencies, but they don't appear to offer many health benefits for the general population.
If you feel that you could be lacking in certain nutrients, it may be better to look at changing your diet rather than reaching for supplements. If you need help, see your doctor or a dietitian.
https://metafact.io/factcheck_answers/2064
https://www.sciencealert.com/multivitamins-don-t-necessarily-make-y...
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!