SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 22 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

Maternal gut microbiome composition and preterm births

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply

Maternal gut microbiome composition may be linked to preterm birthsPeople associate several things regarding pregnancy to eclipses and other natural phenomenon. They also associate them with papaya…Continue

Our understanding of lightning has been driven by fear and shaped by curiosity

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply

Playwright Tom Stoppard, in "Rosencrantz and Guildenstern are Dead," provides one of the…Continue

The words ‘Just believing’ are not there in the dictionaries of science

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Sep 6. 1 Reply

Q: Why do some people find comfort in the idea of being "recycled" into nature rather than believing in an afterlife?Krishna: Because ‘"recycled" into nature’ is an evidence based fact and people…Continue

Don't blame the criminals for everything they do

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Sep 2. 1 Reply

Don't blame the criminals for everything they do. A suspected perpetrator who can barely remember his name, several traffic violations committed by a woman in her mid-fifties who is completely…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on November 11, 2020 at 12:08pm

Scientists Just Discovered  over 12,000 New Species of Microbes

Growing microbes in a petri dish is pretty simple – swab basically anything, wipe it on an agar plate, let it sit for a few days in a warm room and presto! You've grown some new furry friends.

But the microbial species you can cultivate in a petri dish are only a tiny fraction of the bacteria, archaea and other microorganisms that would have been picked up by the swab - only the ones suited to the conditions you grew them in.

The overwhelming majority of them do not like the environments we can provide, and therefore won't obediently grow in a petri dish.

Now, an international team of researchers has found 12,556 new species of bacteria and archaea that have never been grown in a lab, using an incredibly cool technique called metagenomics.

"We were able to reconstruct thousands of metagenome-assembled genomes (MAGs) directly from sequenced environmental samples without needing to cultivate the microbes in the lab," said DOE Joint Genome Institute geneticist and first author, Stephen Nayfach.

"What makes this study really stand out from previous efforts is the remarkable environmental diversity of the samples we analysed."

https://www.sciencealert.com/scientists-have-just-uncovered-12-000-...

https://www.nature.com/articles/s41587-020-0718-6

https://phys.org/news/2020-11-scientists-genomes-birds-avian-famili...

Comment by Dr. Krishna Kumari Challa on November 11, 2020 at 12:05pm

What Happens When You Overcharge A Battery Understanding what causes dendrites in lithium-ion batteries could help make the ubiquitous technology safer. https://www.asianscientist.com/2020/11/tech/battery-overcharge-lith...

Comment by Dr. Krishna Kumari Challa on November 11, 2020 at 9:30am

Radioactive: new Marie Curie biopic inspires, but resonates uneasily for women in science

https://theconversation.com/radioactive-new-marie-curie-biopic-insp...

--

How memorable melodies can make your research sing

Writing songs for open-mic sessions at a Boston bar helped scientist-songwriter Saurja DasGupta to communicate his research more confidently.
https://www.nature.com/articles/d41586-020-03175-7?utm_source=Natur...

Sci-com using music

"In The Beginning Was RNA": Saurja DasGupta - UChicagoGRAD Three Minute Thesis Competition

Comment by Dr. Krishna Kumari Challa on November 11, 2020 at 9:16am

How do we reduce the risk of animal viruses jumping to humans?

Comment by Dr. Krishna Kumari Challa on November 11, 2020 at 9:03am

Researchers discover two key events that turn normal cells into cancer

More than 100 different cancers can arise all over the body, but two universal metabolic pathways may tie them all together, researchers report in a new study published today online in Cell Metabolism. Researchers have long believed all cancers are governed by a common set of fundamental processes. Exactly what those were, however, has remained elusive.

Having a unifying mechanism could inform new therapeutic approaches to prevent normal cells from transforming into any type of tumour, be it breast, prostate, or colon, for example.

The team discovered how the transformation from a phenotypically normal cell to a cancerous one involves the enhancement of two key elements: antioxidant defense and nucleotide synthesis. Genes associated with cancer, they found, are super charging some cells to fight off oxidative stress and synthesize nucleotides, which cells need to survive and rapidly grow, respectively.

The researchers first overexpressed the gene G6PD, which makes the enzyme glucose-6-phosphate dehydrogenase, in mice and human cells. That enzyme is active in nearly all cells in the body and involved in the normal processing of carbohydrates. They showed that this overexpression alone turned human cells cancerous and led to tumors in the mice.

Next, they analyzed the mechanisms involved in that overexpression to pinpoint what pathways were critical to the transformation. They found that G6PD stimulates production of new NADPH, a crucial co-enzyme for maintaining redox balance (which keeps the cell from being damaged and dying off), as well as more nucleotide precursors to keep them multiplying. Under conditions that elicit oxidative stress, which are often encountered by cancer cells due to their relentless proliferation, often in a wrong place, a normal cell would buckle, but a cancer cell armed with these additions presses on.

The findings also lend further evidence shown in clinical trials and other studies that antioxidants in fact support tumor growth, not decrease it. For a tumor to form, it needs a robust antioxidant defense; giving it more antioxidants provides an ideal environment for it to do that. The findings also provide an explanation for the observation that compounds interfering with nucleotide biosynthesis are among the most successful chemotherapeutic drugs for cancer.

Importantly, the study reveals a molecular framework to better understand the process of oncogenesis and a potential road map for new approaches to treat cancer, the authors said.

Now we can say that the oncogenic transformation comes from two fundamental steps. “Our study also suggests that combining therapeutics that affect both events, some which are already in clinics, would be more effective at preventing normal cells from becoming cancerous.

https://www.pennmedicine.org/news/news-releases/2020/november/penn-...

https://researchnews.cc/news/3504/Penn-researchers-discover-two-key...

Comment by Dr. Krishna Kumari Challa on November 11, 2020 at 8:29am

A new candidate material for Quantum Spin Liquids

 In 1973, physicist and later Nobel laureate Philip W. Anderson proposed a bizarre state of matter: the quantum spin liquid (QSL). Unlike the everyday liquids we know, the QSL actually has to do with magnetism – and magnetism has to do with spin.

What makes a magnet? It was a long-lasting mystery, but today we finally know that magnetism arises from a peculiar property of sub-atomic particles, like electrons. That property is called “spin”, and the best – yet grossly insufficient – way to think of it is like a child’s spinning-top toy.

What is important for magnetism is that spin turns every one of a material’s billions of electrons into a tiny magnet with its own magnetic “direction” (think north and south pole of a magnet). But the electron spins aren’t isolated; they interact with each other in different ways until they stabilize to form various magnetic states, thereby granting the material they belong to magnetic properties.

In a conventional magnet, the interacting spins stabilize, and the magnetic directions of each electron align. This results in a stable formation.

But in what is known as a “frustrated” magnet, the electron spins can’t stabilize in the same direction. Instead, they constantly fluctuate like a liquid – hence the name “quantum spin liquid.”

What is exciting about QSLs is that they can be used in a number of applications. Because they come in different varieties with different properties, QSLs can be used in quantum computing, telecommunications, superconductors, spintronics (a variation of electronics that uses electron spin instead of current), and a host of other quantum-based technologies.

But before exploiting them, we first have to gain a solid understanding of QSL states. To do this, scientists have to find ways to produce QSLs on demand.

 Scientists have successfully produced and studied a QSL in a highly original material known as EDT-BCO.

The structure of EDT-BCO is what makes it possible to create a QSL. The electron spins in the EDT-BCO form triangularly organized dimers, each of which has a spin-1/2 magnetic moment which means that the electron must fully rotate twice to return to its initial configuration. The layers of spin-1/2 dimers are separated by a sublattice of carboxylate anions centred by a chiral bicyclooctane. The anions are called “rotors” because they have conformational and rotational degrees of freedom.

The unique rotor component in a magnetic system makes the material special amongst QSL candidates, representing a new material family. “The subtle disorder provoked by the rotor components introduces a new handle upon the spin system.

The scientists and their collaborators employed an arsenal of methods to explore the EDT-BCO as a QSL material candidate: density functional theory calculations, high-frequency electron spin resonance measurements, nuclear magnetic resonance, and muon spin spectroscopy. All of these techniques explore the magnetic properties of EDT-BCO from different angles.

All the techniques confirmed the absence of long-range magnetic order and the emergence of a QSL. In short, EDT-BCO officially joins the limited ranks of QSL materials and takes us a step further into the next generation of technologies.

https://actu.epfl.ch/news/a-new-candidate-material-for-quantum-spin...

https://researchnews.cc/news/3511/A-new-candidate-material-for-Quan...

Comment by Dr. Krishna Kumari Challa on November 11, 2020 at 8:01am

Why bats fly into walls

Bats excel in acoustic perception and detect objects as tiny as mosquitoes using sound waves. Echolocation permits them to calculate the three-dimensional location of both small and large objects, perceiving their shape, size and texture. To this end, a bat's brain processes acoustic dimensions such as frequency, spectrum and intensity from the echoes returning from the object.

But sometimes bats collide with large walls even though they detect these walls with their sonar system. Researchers from Tel Aviv University (TAU) have concluded that these collisions do not result from a sensory limitation but rather from an error in acoustic perception.

 The researchers discovered that the bats collided with large sponge walls that produce a weak echo as if they did not exist. The bats' behaviour suggested that they did this even though they had detected the wall with their sonar system, indicating that the collision did not result from a sensory limitation, but rather from an acoustic misperception.

The researchers hypothesize that the unnatural combination of a large object and a weak echo disrupts the bats' sensory perception and causes them to ignore the obstacle, much like people who bump into transparent walls.

The researchers then methodically changed the features of the objects along the corridor, varying their size, texture and echo intensity. They concluded that the bats' acoustic perception depends on a coherent, typical correlation of the dimensions with objects in nature—that a large object should produce a strong echo and a small object a weak echo.

By presenting the bats with objects whose acoustic dimensions are not coherent, we were able to mislead them, creating a misconception that caused them to repeatedly try to fly into a wall even though they had identified it with their sonar. The experiment gives us a peek into how the world is perceived by these creatures, whose senses are so unique and different from ours.

Sasha Danilovich et al, Echolocating bats detect but misperceive a multidimensional incongruent acoustic stimulus, Proceedings of the National Academy of Sciences (2020). DOI: 10.1073/pnas.2005009117

https://phys.org/news/2020-11-walls.html

--

Fruit bats can transform echoes into images

https://phys.org/news/2019-06-fruit-echoes-images.html

Comment by Dr. Krishna Kumari Challa on November 11, 2020 at 7:53am

Study identifies new 'hidden' gene in COVID-19 virus

Researchers have discovered a new "hidden" gene in SARS-CoV-2—the virus that causes COVID-19—that may have contributed to its unique biology and pandemic potential. In a virus that only has about 15 genes in total, knowing more about this and other overlapping genes—or "genes within genes"—could have a significant impact on how we combat the virus.

Overlapping genes may be one of an arsenal of ways in which coronaviruses have evolved to replicate efficiently, thwart host immunity, or get themselves transmitted. Knowing that overlapping genes exist and how they function may reveal new avenues for corona virus control, for example through antiviral drugs.

The research team identified ORF3d, a new overlapping gene in SARS-CoV-2 that has the potential to encode a protein that is longer than expected by chance alone. They found that this gene is also present in a previously discovered pangolin coronavirus, perhaps reflecting repeated loss or gain of this gene during the evolution of SARS-CoV-2 and related viruses. In addition, ORF3d has been independently identified and shown to elicit a strong antibody response in COVID-19 patients, demonstrating that the new gene's protein is manufactured during human infection.

Chase W Nelson et al, Dynamically evolving novel overlapping gene as a factor in the SARS-CoV-2 pandemic, eLife (2020). DOI: 10.7554/eLife.59633

https://phys.org/news/2020-11-hidden-gene-covid-virus.html

Comment by Dr. Krishna Kumari Challa on November 11, 2020 at 7:46am

Scientists have discovered an ancient lake bed deep beneath the Greenland ice

Scientists have detected what they say are the sediments of a huge ancient lake bed sealed more than a mile under the ice of northwest Greenland—the first-ever discovery of such a sub-glacial feature anywhere in the world. Apparently formed at a time when the area was ice-free but now completely frozen in, the lake bed may be hundreds of thousands or millions of years old, and contain unique fossil and chemical traces of past climates and life. 

Guy J.G. Paxman et al. A fault-bounded palaeo-lake basin preserved beneath the Greenland Ice Sheet, Earth and Planetary Science Letters (2020). DOI: 10.1016/j.epsl.2020.116647

https://phys.org/news/2020-11-scientists-ancient-lake-bed-deep.html...

Comment by Dr. Krishna Kumari Challa on November 11, 2020 at 7:36am

Scientists use bacteria as micro-3-D printers

A team at Aalto University has used bacteria to produce intricately designed three-dimensional objects made of nanocellulose. With their technique, the researchers are able to guide the growth of bacterial colonies through the use of strongly water repellent—or superhydrophobic—surfaces. The objects show tremendous potential for medical use, including supporting tissue regeneration or as scaffolds to replace damaged organs.

Unlike fibrous objects made through current 3-D printing methods, the new technique allows fibers, with a diameter a thousand times thinner than a human hair, to be aligned in any orientation, even across layers, and various gradients of thickness and topography, opening up new possibilities for application in tissue regeneration. These kinds of physical characteristics are crucial for support materials in the growth and regeneration of certain types of tissues found in muscles as well as in the brain.

Luiz G. Greca et al, Guiding Bacterial Activity for Biofabrication of Complex Materials via Controlled Wetting of Superhydrophobic Surfaces, ACS Nano (2020). DOI: 10.1021/acsnano.0c03999

https://phys.org/news/2020-11-scientists-bacteria-micro-d-printers....

 

Members (22)

 
 
 

© 2025   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service