Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 6 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Sunday. 1 Reply 0 Likes
Q: How Big is the universe?Krishna: The total size of the universe is not known, and some scientists think it could be many times larger than the observable portion. For example, one hypothesis…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Saturday. 1 Reply 0 Likes
Q: Why do some people commit crimes? What does science say about it?Krishna: It is easy to blame people. But did you know that the way your brain wires or rewires because of different situations it…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Jun 25. 1 Reply 0 Likes
Cars may be a modern phenomenon, but motion sickness is not. More than 2,000 years ago, the physician …Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Jun 25. 1 Reply 0 Likes
"De-evolution" or "devolution" is a concept suggesting that species can revert to more primitive forms over time.Some scientists don't accept this concept at all. They say Evolution is a continuous…Continue
Comment
**‘I didn’t mean to hurt you’: new research shows funnel webs don’t set out to kill humans
https://theconversation.com/i-didnt-mean-to-hurt-you-new-research-s...
--
The mysterious deaths of at least 330 elephants in Botswana this year was caused by cyanobacteria-infected water, say wildlife officials. There are still many unanswered questions, including why only elephants seem to have been affected and why this mostly occurred in one region.
https://www.bloomberg.com/news/articles/2020-09-21/botswana-says-ma...
--
Are Humans Still Evolving? Find out ….
Frozen water can take on up to three forms at the same time when it melts: liquid, ice and gas. This principle, which states that many substances can occur in up to three phases simultaneously, was explained 150 years ago by the Gibbs phase rule. Now researchers are defying this classical theory, with proof of a five-phase equilibrium, something that many scholars considered impossible.
Gibbs' thermodynamics rule: If we take water as an example, there is one point, with a specific temperature and pressure, where water occurs as gas, liquid and ice at the same time, the so-called triple point.
But researchers now show that in this mixture, there is a whole series of circumstances in which four phases exist at the same time. There is even one point at which there are five coexisting phases—two too many.
At that specific point, also called a five-phase equilibrium, a gas phase, two liquid crystal phases, and two solid phases with 'ordinary' crystals exist simultaneously. And that has never been seen before. This is the first time that the famous Gibbs rule has been broken.
The crux lies in the shape of the particles in the mixture. scientists now show that it is precisely the specific length and diameter of the particles that play a major role.
In addition to the known variables of temperature and pressure, you get two additional variables: the length of the particle in relation to its diameter, and the diameter of the particle in relation to the diameter of other particles in the solution.
V. F. D. Peters et al, Defying the Gibbs Phase Rule: Evidence for an Entropy-Driven Quintuple Point in Colloid-Polymer Mixtures, Physical Review Letters (2020). DOI: 10.1103/PhysRevLett.125.127803
https://phys.org/news/2020-09-defying-year-old-phase-behavior.html?...
Until now, the history of superconducting materials has been a tale of two types: s-wave and d-wave. Now researchers have discovered a possible third type: g-wave.
Electrons in superconductors move together in what are known as Cooper pairs. This "pairing" endows superconductors with their most famous property—no electrical resistance—because, in order to generate resistance, the Cooper pairs have to be broken apart, and this takes energy.
In s-wave superconductors—generally conventional materials, such as lead, tin and mercury—the Cooper pairs are made of one electron pointing up and one pointing down, both moving head-on toward each other, with no net angular momentum. In recent decades, a new class of exotic materials has exhibited what's called d-wave superconductivity, whereby the Cooper pairs have two quanta of angular momentum.
Physicists have theorized the existence of a third type of superconductor between these two so-called "singlet" states: a p-wave superconductor, with one quanta of angular momentum and the electrons pairing with parallel rather than antiparallel spins. This spin-triplet superconductor would be a major breakthrough for quantum computing because it can be used to create Majorana fermions, a unique particle which is its own antiparticle.
For more than 20 years, one of the leading candidates for a p-wave superconductor has been strontium ruthenate (Sr2RuO4), although recent research has started to poke holes in the idea.
Researchers now set out to determine once and for all whether strontium ruthenate is a highly desired p-wave superconductor. Using high-resolution resonant ultrasound spectroscopy, they discovered that the material is potentially an entirely new kind of superconductor altogether: g-wave.
Thermodynamic evidence for a two-component superconducting order parameter in Sr2RuO4, DOI: 10.1038/s41567-020-1032-4 , www.nature.com/articles/s41567-020-1032-4
https://phys.org/news/2020-09-superconductor.html?utm_source=nwlett...
Physicists have established why objects moving through superfluid helium-3 lack a speed limit.
Helium-3 is a rare isotope of helium, in which one neutron is missing. It becomes superfluid at extremely low temperatures, enabling unusual properties such as a lack of friction for moving objects.
It was thought that the speed of objects moving through superfluid helium-3 was fundamentally limited to the critical Landau velocity, and that exceeding this speed limit would destroy the superfluid. Prior experiments in Lancaster have found that it is not a strict rule and objects can move at much greater speeds without destroying the fragile superfluid state.
Now scientists from Lancaster University have found the reason for the absence of the speed limit: exotic particles that stick to all surfaces in the superfluid.
The discovery may guide applications in quantum technology, even quantum computing, where multiple research groups already aim to make use of these unusual particles.
Superfluid helium-3 feels like vacuum to a rod moving through it, although it is a relatively dense liquid. There is no resistance, none at all.
Nature Communications (2020). DOI: 10.1038/s41467-020-18499-1
https://phys.org/news/2020-09-limit-superfluid-universe.html?utm_so...
This video shows just how easily COVID-19 could spread when people sing together
and how online singing is safe …..
Other options for safer group singing now and in the future include: singing outside or in a well-ventilated room with large open windows as this is likely to dissipate aerosols and further reduce the risk physical distancing of at least two metres while singing short performances to minimise exposure humming rather than singing during rehearsals, because we show consonants (such as “do”) generate the most aerosols singing softly (and using amplifiers) as this is likely to emit fewer aerosols using rapid test kits, if available, which would allow singers to be screened before performing assessing risk factors for individual singers based on age, chronic diseases and other risk factors for COVID-19. It is more important people at high risk of complications from COVID-19 avoid group singing while there is community transmission. Some people recommend wearing face shields while group singing. But these allow you to breathe in aerosols through the gap underneath, which may be even more likely with the powerful inhalations during singing.
https://theconversation.com/this-video-shows-just-how-easily-covid-...
https://www.sciencealert.com/new-research-helps-explain-why-tiny-hu...
--
If there is life on Venus, how could it have got there? Origin of life experts explain
https://theconversation.com/if-there-is-life-on-venus-how-could-it-...
--
How could wearing a mask help build immunity to COVID-19? It’s all about the viral dose
https://theconversation.com/how-could-wearing-a-mask-help-build-imm...
https://www.sciencenews.org/article/snake-bite-venom-cheap-innovati...
--
Shape matters for light-activated nanocatalysts
Points matter when designing nanoparticles that drive important chemical reactions using the power of light.
Nanophotonics (LANP) researchers have long known that a nanoparticle’s shape affects how it interacts with light, and their latest study shows how shape affects a particle’s ability to use light to catalyze important chemical reactions.
In a comparative study aluminum nanoparticles with identical optical properties but different shapes were used. The most rounded had 14 sides and 24 blunt points. Another was cube-shaped, with six sides and eight 90-degree corners. The third, which the team dubbed “octopod,” also had six sides, but each of its eight corners ended in a pointed tip.
All three varieties have the ability to capture energy from light and release it periodically in the form of super-energetic hot electrons that can speed up catalytic reactions. They also conducted experiments to see how well each of the particles performed as photocatalysts for hydrogen dissociation reaction. The tests showed octopods had a 10 times higher reaction rate than the 14-sided nanocrystals and five times higher than the nanocubes. Octopods also had a lower apparent activation energy, about 45% lower than nanocubes and 49% lower than nanocrystals.
The experiments demonstrated that sharper corners increased efficiencies.
https://news.rice.edu/2020/09/18/shape-matters-for-light-activated-...
https://researchnews.cc/news/2612/Shape-matters-for-light-activated...
FameLab international competition in sci-com
FameLab Basel Semi-Finals 2020
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!