Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: yesterday
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply 0 Likes
Impostor participants threaten the integrity of health research, and by extension, the policies and clinical decisions built on it, …Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply 0 Likes
Graphical abstract. Credit: Insect Biochemistry and Molecular…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Q: Why do bats spread so many diseases? Let us start with positive things. In reality, bats are truly remarkable.Bats support our agricultural industries as vital members of food webs. Bats…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Black mambas (Dendroaspis polylepis) are Africa's longest, most famous venomous snakes. Despite their fearsome reputation, these misunderstood snakes are vital players in their ecosystems. They keep…Continue
Comment
Radioactive: new Marie Curie biopic inspires, but resonates uneasily for women in science
https://theconversation.com/radioactive-new-marie-curie-biopic-insp...
--
How do we reduce the risk of animal viruses jumping to humans?
Researchers discover two key events that turn normal cells into cancer
More than 100 different cancers can arise all over the body, but two universal metabolic pathways may tie them all together, researchers report in a new study published today online in Cell Metabolism. Researchers have long believed all cancers are governed by a common set of fundamental processes. Exactly what those were, however, has remained elusive.
Having a unifying mechanism could inform new therapeutic approaches to prevent normal cells from transforming into any type of tumour, be it breast, prostate, or colon, for example.
The team discovered how the transformation from a phenotypically normal cell to a cancerous one involves the enhancement of two key elements: antioxidant defense and nucleotide synthesis. Genes associated with cancer, they found, are super charging some cells to fight off oxidative stress and synthesize nucleotides, which cells need to survive and rapidly grow, respectively.
The researchers first overexpressed the gene G6PD, which makes the enzyme glucose-6-phosphate dehydrogenase, in mice and human cells. That enzyme is active in nearly all cells in the body and involved in the normal processing of carbohydrates. They showed that this overexpression alone turned human cells cancerous and led to tumors in the mice.
Next, they analyzed the mechanisms involved in that overexpression to pinpoint what pathways were critical to the transformation. They found that G6PD stimulates production of new NADPH, a crucial co-enzyme for maintaining redox balance (which keeps the cell from being damaged and dying off), as well as more nucleotide precursors to keep them multiplying. Under conditions that elicit oxidative stress, which are often encountered by cancer cells due to their relentless proliferation, often in a wrong place, a normal cell would buckle, but a cancer cell armed with these additions presses on.
The findings also lend further evidence shown in clinical trials and other studies that antioxidants in fact support tumor growth, not decrease it. For a tumor to form, it needs a robust antioxidant defense; giving it more antioxidants provides an ideal environment for it to do that. The findings also provide an explanation for the observation that compounds interfering with nucleotide biosynthesis are among the most successful chemotherapeutic drugs for cancer.
Importantly, the study reveals a molecular framework to better understand the process of oncogenesis and a potential road map for new approaches to treat cancer, the authors said.
Now we can say that the oncogenic transformation comes from two fundamental steps. “Our study also suggests that combining therapeutics that affect both events, some which are already in clinics, would be more effective at preventing normal cells from becoming cancerous.
https://www.pennmedicine.org/news/news-releases/2020/november/penn-...
https://researchnews.cc/news/3504/Penn-researchers-discover-two-key...
A new candidate material for Quantum Spin Liquids
In 1973, physicist and later Nobel laureate Philip W. Anderson proposed a bizarre state of matter: the quantum spin liquid (QSL). Unlike the everyday liquids we know, the QSL actually has to do with magnetism – and magnetism has to do with spin.
What makes a magnet? It was a long-lasting mystery, but today we finally know that magnetism arises from a peculiar property of sub-atomic particles, like electrons. That property is called “spin”, and the best – yet grossly insufficient – way to think of it is like a child’s spinning-top toy.
What is important for magnetism is that spin turns every one of a material’s billions of electrons into a tiny magnet with its own magnetic “direction” (think north and south pole of a magnet). But the electron spins aren’t isolated; they interact with each other in different ways until they stabilize to form various magnetic states, thereby granting the material they belong to magnetic properties.
In a conventional magnet, the interacting spins stabilize, and the magnetic directions of each electron align. This results in a stable formation.
But in what is known as a “frustrated” magnet, the electron spins can’t stabilize in the same direction. Instead, they constantly fluctuate like a liquid – hence the name “quantum spin liquid.”
What is exciting about QSLs is that they can be used in a number of applications. Because they come in different varieties with different properties, QSLs can be used in quantum computing, telecommunications, superconductors, spintronics (a variation of electronics that uses electron spin instead of current), and a host of other quantum-based technologies.
But before exploiting them, we first have to gain a solid understanding of QSL states. To do this, scientists have to find ways to produce QSLs on demand.
Scientists have successfully produced and studied a QSL in a highly original material known as EDT-BCO.
The structure of EDT-BCO is what makes it possible to create a QSL. The electron spins in the EDT-BCO form triangularly organized dimers, each of which has a spin-1/2 magnetic moment which means that the electron must fully rotate twice to return to its initial configuration. The layers of spin-1/2 dimers are separated by a sublattice of carboxylate anions centred by a chiral bicyclooctane. The anions are called “rotors” because they have conformational and rotational degrees of freedom.
The unique rotor component in a magnetic system makes the material special amongst QSL candidates, representing a new material family. “The subtle disorder provoked by the rotor components introduces a new handle upon the spin system.
The scientists and their collaborators employed an arsenal of methods to explore the EDT-BCO as a QSL material candidate: density functional theory calculations, high-frequency electron spin resonance measurements, nuclear magnetic resonance, and muon spin spectroscopy. All of these techniques explore the magnetic properties of EDT-BCO from different angles.
All the techniques confirmed the absence of long-range magnetic order and the emergence of a QSL. In short, EDT-BCO officially joins the limited ranks of QSL materials and takes us a step further into the next generation of technologies.
https://actu.epfl.ch/news/a-new-candidate-material-for-quantum-spin...
https://researchnews.cc/news/3511/A-new-candidate-material-for-Quan...
Bats excel in acoustic perception and detect objects as tiny as mosquitoes using sound waves. Echolocation permits them to calculate the three-dimensional location of both small and large objects, perceiving their shape, size and texture. To this end, a bat's brain processes acoustic dimensions such as frequency, spectrum and intensity from the echoes returning from the object.
But sometimes bats collide with large walls even though they detect these walls with their sonar system. Researchers from Tel Aviv University (TAU) have concluded that these collisions do not result from a sensory limitation but rather from an error in acoustic perception.
The researchers discovered that the bats collided with large sponge walls that produce a weak echo as if they did not exist. The bats' behaviour suggested that they did this even though they had detected the wall with their sonar system, indicating that the collision did not result from a sensory limitation, but rather from an acoustic misperception.
The researchers hypothesize that the unnatural combination of a large object and a weak echo disrupts the bats' sensory perception and causes them to ignore the obstacle, much like people who bump into transparent walls.
The researchers then methodically changed the features of the objects along the corridor, varying their size, texture and echo intensity. They concluded that the bats' acoustic perception depends on a coherent, typical correlation of the dimensions with objects in nature—that a large object should produce a strong echo and a small object a weak echo.
By presenting the bats with objects whose acoustic dimensions are not coherent, we were able to mislead them, creating a misconception that caused them to repeatedly try to fly into a wall even though they had identified it with their sonar. The experiment gives us a peek into how the world is perceived by these creatures, whose senses are so unique and different from ours.
Sasha Danilovich et al, Echolocating bats detect but misperceive a multidimensional incongruent acoustic stimulus, Proceedings of the National Academy of Sciences (2020). DOI: 10.1073/pnas.2005009117
https://phys.org/news/2020-11-walls.html
--
Researchers have discovered a new "hidden" gene in SARS-CoV-2—the virus that causes COVID-19—that may have contributed to its unique biology and pandemic potential. In a virus that only has about 15 genes in total, knowing more about this and other overlapping genes—or "genes within genes"—could have a significant impact on how we combat the virus.
Overlapping genes may be one of an arsenal of ways in which coronaviruses have evolved to replicate efficiently, thwart host immunity, or get themselves transmitted. Knowing that overlapping genes exist and how they function may reveal new avenues for corona virus control, for example through antiviral drugs.
The research team identified ORF3d, a new overlapping gene in SARS-CoV-2 that has the potential to encode a protein that is longer than expected by chance alone. They found that this gene is also present in a previously discovered pangolin coronavirus, perhaps reflecting repeated loss or gain of this gene during the evolution of SARS-CoV-2 and related viruses. In addition, ORF3d has been independently identified and shown to elicit a strong antibody response in COVID-19 patients, demonstrating that the new gene's protein is manufactured during human infection.
Chase W Nelson et al, Dynamically evolving novel overlapping gene as a factor in the SARS-CoV-2 pandemic, eLife (2020). DOI: 10.7554/eLife.59633
Scientists have detected what they say are the sediments of a huge ancient lake bed sealed more than a mile under the ice of northwest Greenland—the first-ever discovery of such a sub-glacial feature anywhere in the world. Apparently formed at a time when the area was ice-free but now completely frozen in, the lake bed may be hundreds of thousands or millions of years old, and contain unique fossil and chemical traces of past climates and life.
Guy J.G. Paxman et al. A fault-bounded palaeo-lake basin preserved beneath the Greenland Ice Sheet, Earth and Planetary Science Letters (2020). DOI: 10.1016/j.epsl.2020.116647
https://phys.org/news/2020-11-scientists-ancient-lake-bed-deep.html...
A team at Aalto University has used bacteria to produce intricately designed three-dimensional objects made of nanocellulose. With their technique, the researchers are able to guide the growth of bacterial colonies through the use of strongly water repellent—or superhydrophobic—surfaces. The objects show tremendous potential for medical use, including supporting tissue regeneration or as scaffolds to replace damaged organs.
Unlike fibrous objects made through current 3-D printing methods, the new technique allows fibers, with a diameter a thousand times thinner than a human hair, to be aligned in any orientation, even across layers, and various gradients of thickness and topography, opening up new possibilities for application in tissue regeneration. These kinds of physical characteristics are crucial for support materials in the growth and regeneration of certain types of tissues found in muscles as well as in the brain.
Luiz G. Greca et al, Guiding Bacterial Activity for Biofabrication of Complex Materials via Controlled Wetting of Superhydrophobic Surfaces, ACS Nano (2020). DOI: 10.1021/acsnano.0c03999
https://phys.org/news/2020-11-scientists-bacteria-micro-d-printers....
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier could deliver cancer-killing drugs directly to malignant brain tumours, new research shows.
The study is the first to demonstrate an intravenous medication that can cross the blood-brain barrier.
The discovery, demonstrated in mice, could enable new clinical therapies for treating glioblastoma, the most common and aggressive form of brain cancer in adults, and one whose incidence is rising in many countries.T oday's median survival for patients with glioblastoma is around 18 months; the average 5-year survival rate is below 5%.
In combination with radiation, the U-M team's intravenously-injected therapy led to long-term survival in seven out of eight mice. When those seven mice experienced a recurrence of glioblastoma, their immune responses kicked in to prevent the cancer's regrowth—without any additional therapeutic drugs or other clinical treatments.
The findings suggest that the U-M team's combination of therapeutic drugs and nanoparticle delivery methods not only eradicated the primary tumour but resulted in immunological memory, or the ability to more quickly recognize—and attack—remaining malignant cancer cells.
Jason V. Gregory et al. Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapy, Nature Communications (2020). DOI: 10.1038/s41467-020-19225-7
https://phys.org/news/2020-11-nanomedicine-brain-eradicates-recurri...
A new study shows flame retardants in homes cause mice to give birth to offspring that become diabetic.
PBDEs are common household chemicals added to furniture, upholstery, and electronics to prevent fires. They get released into the air people breathe at home, in their cars, and in airplanes because their chemical bond to surfaces is weak.
"PBDEs are everywhere in the home. They're impossible to completely avoid
These flame retardants, called PBDEs, have been associated with diabetes in adult humans. This study demonstrates that PBDEs cause diabetes in mice only exposed to the chemical through their mothers.
The mice received PBDEs from their mothers while they were in the womb and as young babies through mother's milk. Remarkably, in adulthood, long after the exposure to the chemicals, the female offspring developed diabetes.
Elena V. Kozlova et al, Maternal transfer of environmentally relevant polybrominated diphenyl ethers (PBDEs) produces a diabetic phenotype and disrupts glucoregulatory hormones and hepatic endocannabinoids in adult mouse female offspring, Scientific Reports (2020). DOI: 10.1038/s41598-020-74853-9
https://medicalxpress.com/news/2020-11-chemicals-room-diabetes.html...
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!