Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 18 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 19 hours ago. 1 Reply 0 Likes
Sand underpins everything from skyscrapers to smartphones. Sharp sand (as opposed to rounded desert sand) is the key ingredient in concrete, while high-purity silica sand is essential for making the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 5 Replies 0 Likes
Science communication series - part 15Scientists take lots of risks while coming out in public regarding their work. And sometimes they will have…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 151 Replies 1 Like
I came across this quote when I was in school. Since then I wanted to be like an eagle -…Continue
Tags: success, will, determination, scientists, obstacles
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Q: Should we question science or just blindly believe what scientist say with research?Krishna:…Continue
Comment
The personal care products we use on a daily basis significantly affect indoor air quality, according to new research.
When used indoors, these products release a cocktail of more than 200 volatile organic compounds (VOCs) into the air, and when those VOCs come into contact with ozone, the chemical reactions that follow can produce new compounds and particles that may penetrate deep into our lungs. Scientists are now wondering how inhaling these particles on a daily basis affects our respiratory health.
These products are roll-on deodorant, spray deodorant, hand lotion, perfume and dry shampoo hair spray—all produced by leading brands and available in major stores across the world.
During their experiments, in one test, the researchers applied the products under typical conditions, while the air quality was carefully monitored. In another test, they did the same thing but also injected ozone, a reactive outdoor gas that occurs in some latitudes during the summer months.
Ozone can infiltrate homes through open windows, but can also come from indoors, for example, when using laser printers and 3D printers. Around five sophisticated measuring instruments were deployed to quantify and identify the gases and particles present in the chamber.
It took the scientists two years to process all the collected data. In the first case without ozone, over 200 VOCs were emitted from the personal care products, which gradually dissipated with ventilation. The most abundant molecules they found were ethanol and monoterpenes, typically used in these products. However, when ozone was introduced into the chamber, not only new VOCs but also new particles were generated, particularly from perfume and sprays, exceeding concentrations found in heavily polluted urban areas.
Some molecules 'nucleate'—in other words, they form new particles that can coagulate into larger ultrafine particles that can effectively deposit into our lungs.
We still don't fully understand the health effects of these pollutants, but they may be more harmful than we think, especially because they are applied close to our breathing zone. This is an area where new toxicological studies are needed, say the researchers.
To limit the effect of personal care products on indoor air air quality, we could consider several alternatives for how buildings are engineered: introducing more ventilation—especially during the products' use—incorporating air-cleaning devices (e.g., activated carbon-based filters combined with media filters), and limiting the concentration of indoor ozone.
The researchers stress that we're going to have to reduce our reliance on these products, or if possible, replace them with more natural alternatives that contain fragrant compounds with low chemical reactivity. Another helpful measure would be to raise awareness of these issues among medical professionals and staff working with vulnerable groups, such as children and the elderly.
Tianren Wu et al, Indoor Emission, Oxidation, and New Particle Formation of Personal Care Product Related Volatile Organic Compounds, Environmental Science & Technology Letters (2024). DOI: 10.1021/acs.estlett.4c00353
New research unveils a hidden factor that could change our understanding of how oceans mitigate climate change. The study, published Oct. 11 in Science, reveals never-before seen mucus "parachutes" produced by microscopic marine organisms that significantly slow their sinking, putting the brakes on a process crucial for removing carbon dioxide from the atmosphere.
The surprising discovery implies that previous estimates of the ocean's carbon sequestration potential may have been overestimated, but also paves the way toward improving climate models and informing policymakers in their efforts to slow climate change.
Rahul Chajwa et al, Hidden comet tails of marine snow impede ocean-based carbon sequestration, Science (2024). DOI: 10.1126/science.adl5767. www.science.org/doi/10.1126/science.adl5767
Inflammation of the arteries is a primary precursor and driver of cardiovascular disease—the No. 1 killer of people in some countries. This inflammation is associated with the buildup of dangerous plaque inside the arteries. Advanced treatments are needed to target this inflammation in patients.
Researchers have tested a new nanoparticle nanotherapy infusion that precisely targets inflammation and activates the immune system to help clear out arterial plaque.
The research is published in the journal Nature Communications.
There are two different things that people seem to be scared of when it comes to plaques.
The first example is when your artery becomes blocked (for example, a 95% to 99% blockage). Often, there are symptoms like pain or pressure in the chest or nausea and dizziness beforehand and doctors will put a stent in the artery to increase blood flow.
The second is when the plaque is highly inflammatory. This can make the plaque vulnerable to rupture, which can lead to artery blockages elsewhere in the body. That's the scarier one that leads to most heart attacks. Because such plaques don't necessarily block much of the artery, and because the effects of the rupture can very suddenly completely block blood flow, such a heart attack can seem to appear as if from nowhere.
Researchers now created nanoparticles—materials that are thinner than a human hair—that they used to develop a nanotherapy infusion. The nanotherapy selectively targets a specific immune cell type that moves into and is a part of the plaque. These treated cells "eat" away parts of the plaque core, removing it from the artery wall and decreasing levels of blood vessel inflammation.
In previous studies they tested the infusion on mice and now, pig models, to prove the infusion's effectiveness, and critically, its lack of side effects due to its precision immune targeting.
Using PET [positron-emission tomography] scans, they were able to measure the effects of the therapy on pig arteries.
They showed in animal models such as pigs that they can decrease the levels of inflammation in the plaque based not only on this clinically used PET imaging technique but also by molecular assays. Just as importantly, they saw none of the side effects that would have been anticipated had the therapy not been precisely targeted.
Sharika Bamezai et al, Pro-efferocytic nanotherapies reduce vascular inflammation without inducing anemia in a large animal model of atherosclerosis, Nature Communications (2024). DOI: 10.1038/s41467-024-52005-1
When the organic solvent wash was mixed in quickly, the silk solution rapidly created fibers with high tensile strength and stickiness. Dopamine and its polymers employ the same chemistry used by barnacles to form fibers that stick tenaciously to surfaces.
The next step was to spin the fibers in air. The researchers added dopamine to the silk fibroin solution, which appears to accelerate the transition from liquid to solid by pulling water away from the silk. When shot through a coaxial needle, a thin stream of the silk solution is surrounded by a layer of acetone which triggers the solidification.
The acetone evaporates in mid-air, leaving a fiber attached to any object it contacts. The researchers enhanced the silk fibroin-dopamine solution with chitosan, a derivative of insect exoskeletons that gave the fibers up to 200 times greater tensile strength, and borate buffer, which increased their adhesiveness about 18-fold.
The diameter of the fibers could be varied between that of a human hair to about half a millimeter, depending on the bore of the needle.
The device can shoot fibers that can pick up objects over 80 times their own weight under various conditions. The researchers demonstrated this by picking up a cocoon, a steel bolt, a laboratory tube floating on water, a scalpel partially buried in sand, and a wood block from a distance of about 12 centimeters.
Who says fiction cannot become fact?
With science everything is possible.
Marco Lo Presti et al, Dynamic Adhesive Fibers for Remote Capturing of Objects, Advanced Functional Materials (2024). DOI: 10.1002/adfm.202414219
Part 2
Creating spider-man's world: researchers recreate web-slinging technology
Every person who has read a comic book or watched a Spider-Man movie has tried to imagine what it would be like to shoot a web from their wrist, fly over streets, and pin down villains. Researchers took those imaginary scenes seriously and created the first web-slinging technology in which a fluid material can shoot from a needle, immediately solidify as a string, and adhere to and lift objects.
The study is published in the journal Advanced Functional Materials.
These sticky fibers, created at the Tufts University Silklab, come from silk moth cocoons, which are boiled in solution and broken down into their building block proteins called fibroin. The silk fibroin solution can be extruded through narrow bore needles to form a stream that, with the right additives, solidifies into a fiber when exposed to air.
Of course, nature is the original inspiration for deploying fibers of silk into tethers, webs, and cocoons. Spiders, ants, wasps, bees, butterflies, moths, beetles, and even flies can produce silk at some point in their lifecycle.
Nature also inspired the Silklab to pioneer the use of silk fibroin to make powerful glues that can work underwater, printable sensors that can be applied to virtually any surface, edible coatings that can extend the shelf life of produce, a light collecting material that could significantly enhance the efficiency of solar cells, and more sustainable microchip manufacturing methods . However, while they made significant progress with silk-based materials, the researchers had yet to replicate the mastery of spiders, which can control the stiffness, elasticity, and adhesive properties of the threads they spin.
Silk fibroin solutions can slowly form a semi-solid hydrogel over a period of hours when exposed to organic solvents like ethanol or acetone, but the presence of dopamine, which is used in making the adhesives, allowed the solidification process to occur almost immediately.
Part 1
First, they had to rule out that any microbes they found were indigenous to the habitat, and not the result of contamination from the extraction process. They used a technique they developed several years ago that involves sterilizing the outside of the sample before cutting it into slices to examine its contents.
Then, they used a cyanine dye to stain the slices. This dye binds to DNA, so if there is any DNA in the sample, it should light up like a Christmas tree when subjected to infrared spectroscopy. And this is exactly what happened.
The sample was also riddled with clay, which packed veins near the pockets in the rock near the microbial colonies.
The result of this clay packing was multifold: it provided a resource for the microbes to live on, with organic and inorganic materials that they could metabolize; and it effectively sealed the rock, both preventing the microbes from escaping, and preventing anything else from entering – including the drilling fluid.
The microbial community in the rock will need to be analyzed in greater detail, including DNA analysis, to determine how it has changed or not changed in the 2 billion years it has been sequestered away from the rest of life on Earth.
https://link.springer.com/article/10.1007/s00248-024-02434-8
Part 2
Deep underground, in the darkness far below the bustling activity on the surface, a community of microbes has been living their best lives in isolation.
What makes these organisms incredibly special is that they have been cut off for billions of years – far longer than any other community of subterranean microbes we've ever seen. This find of living microbes in 2 billion-year-old rock absolutely smashes the previous record of 100 million years.
And it's a significant one: microbes in isolated underground pockets like these tend to evolve more slowly, since they're detached from many of the pressures that drive evolution in more populated habitats.
This means that the microbe community can tell us things we might not have known about microbe evolution here on Earth. But it also suggests that there might be underground microbe communities still alive on Mars, surviving long after the water on the surface dried out.
By studying the DNA and genomes of microbes like these, we may be able to understand the evolution of very early life on Earth.
The sample of rock was drilled from 15 meters (50 feet) underground from a formation known as the Bushveld Igneous Complex in northeastern South Africa. This formation is huge, a 66,000 square kilometer (25,500 square mile) intrusion into Earth's crust that formed some 2 billion years ago from molten magma cooling below the surface.
Part 1
Regular fish consumption may lower the risk for tinnitus in women, according to a study published online Sept. 28 in the American Journal of Clinical Nutrition.
Researchers examined the longitudinal association between seafood intake and tinnitus. The analysis included 73,482 women participating in the Nurses' Health Study II (1991 to 2021).
The researchers found that seafood intake was independently associated with a lower risk for developing persistent tinnitus. Among participants who consumed one serving of fish per week, the risk for tinnitus was 13 percent lower; risk was 23 percent lower for those who consumed two to four servings per week and 21 percent lower for those who consumed five or more servings.
Higher intakes of tuna fish, light-meat fish, and shellfish all were associated with lower risk (e.g., consumption of tuna at least once weekly: adjusted hazard ratio [aHR], 0.84; light-meat fish: aHR, 0.91; shellfish: aHR, 0.82). There was a trend for a higher risk with dark-meat fish intake, while fish oil supplement use was associated with a higher risk (aHRs, 1.09 and 1.12, respectively).
"These findings indicate that dietary factors may be important in the pathogenesis of tinnitus," the authors write.
Sharon G. Curhan et al, Longitudinal Study of Seafood and Fish Oil Supplement Intake and Risk of Persistent Tinnitus, The American Journal of Clinical Nutrition (2024). DOI: 10.1016/j.ajcnut.2024.09.028
**
Plant-based diets, compassionate agriculture, Indigenous methods, consumer pressure, new laws, international agreements and even vegan pets—these are the solutions for fixing our broken food and farming systems, say dozens of environmental advocates, researchers, farmers and industry pioneers.
Warning that 'our food system is broken' and radical change is needed to mend it, they say, in our world where one‑third of food is lost or wasted, 780 million people are hungry, and three billion people cannot afford to eat healthily.
We have just sixty harvests left in our soils to save the future for our children. For people, animals and the planet, the clock is ticking. There is no time to lose. What we do now will define the next one thousand years.
In his chapter, scientist Tim Benton illuminates how increased meat consumption has been a major driver of our planetary crisis. "As demand has risen—partly because of a growing global population but mainly owing to increased meat consumption and the associated increase in demand for animal feed—so too has the use of chemical inputs such as fertilizer, pesticides and herbicides to maximize yields on existing cropland… Nature has suffered as a result. Food production is therefore a central cause of declining biodiversity, deforestation, water and air pollution and land degradation.
But far from simply tolling a klaxon of doom, they elicit hope by offering solutions for feeding the world, while nourishing our soils and protecting our species.
We can bridge the climate change emissions gap through ecological agriculture now, not at some point in the future. Even if only 10% of farms and pastures are managed regeneratively by maximizing photosynthesis and root exudates, we can mitigate emissions by fixing more living carbon in plants and building up carbon in soil.
The solution to hunger extinction and the climate emergency is to return to Earth and regenerate her biodiversity in soils, our farms, forests, our diets and our guts.
Joyce D'Silva et al, Regenerative Farming and Sustainable Diets, Regenerative Farming and Sustainable Diets (2024). DOI: 10.4324/9781032684369
But I think this is too alarmist although there is some truth in it.
**
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!