Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 1 hour ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 1 hour ago. 1 Reply 0 Likes
On the east coast of Australia, in tropical North Queensland, lies the Daintree rainforest—a place where the density of trees forms an almost impenetrable mass of green.Stepping into the forest can…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 2 Replies 0 Likes
Sometime back a rationalist was killed in Maharashtra (Indian State) for educating people about the truth of witchcraft. We had a discussion on the subject on an online news website. There while…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Firefighters battling the deadly wildfires that raced through the Los Angeles area in January 2025 have been hampered by a …Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Increased AI use linked to eroding critical thinking skillsImage source:…Continue
Comment
A single infusion of a powerful antibody called VRC01 can suppress the level of HIV in the blood of infected people who are not taking antiretroviral therapy (ART), scientists at the US National Institutes of Health report in a paper published on 23rd Dec, 2015. The researchers also found that giving HIV-infected people VRC01 antibodies by infusing them into a vein or under the skin is safe and well tolerated, and the antibodies remain in the blood for an extended period.
The researchers found that while antibody infusions did not reduce the amount of HIV in blood cells, they reduced plasma viral load more than 10-fold in six of the eight people who were not on ART. In the two people in this group who began the study with the lowest viral loads, the antibody suppressed HIV to extremely low levels for approximately 3 weeks--as long as VRC01 was present at therapeutic concentrations. In the other four people whose HIV levels declined, their viral load fell substantially but did not reach undetectable levels. In the two people not on ART whose viral loads remained steady despite the antibody infusion, it was subsequently found that the predominant HIV strain in their bodies had been resistant to VRC01 at the outset. The antibody also did not appear to have any effect in people taking ART, whose virus was already suppressed.
- Sciencecodex.com
Why some animals, especially those people consume contain mercury?
Here is the answer...
It is advisable for children and pregnant women not to eat too much fish. Why? Because they might contain harmful mercury!
Mercury pollution, from sources such as gold mining and power generation, ends up in the atmosphere and then the oceans, where it is transformed into methylmercury, which is as toxic as the element. Methylmercury accumulates in ocean creatures, and animals higher up in the food chain, such as tuna, tend to have higher levels of mercury. People who eat enough of those fish can experience health problems; mercury can impair development in children, infants and fetuses.
In 2012, researchers reported that methylmercury could be found in fog water along the central Californian coast. Now researchers are finding that the mercury, picked up from ocean water, is being deposited on land and accumulating in animals, from spiders to mountain lions. Starting with arthropods, wolf spiders, camel crickets and pill bugs all contained mercury. The researchers found mercury in all the arthropods, but the highest levels were in the wolf spiders, the team reported in the April Bulletin of Environmental Contamination and Toxicology. Wolf spiders are carnivorous, and they appeared to be acquiring more mercury through bioaccumulation. Other species, bigger ones, may also be affected.
Preliminary data shows high levels of mercury in deer in central California and in the mountain lions that eat them. A couple of mountain lions had mercury levels high enough that they could be experiencing health problems.
Researchers are still working to trace the path of toxic mercury from ocean waters to fog to land to animals, and on up the food chain.
But this research is a worrying sign that mercury pollution may be a much bigger problem than we realize, and one that can’t be solved by simply limiting the amount of tuna you eat.
- Science News. org
Microbial community assembly and metabolic function during mammalian corpse decomposition
http://www.sciencemag.org/content/early/2015/12/09/science.aad2646
You are filled with bacteria, and you are covered in them. And a whole lot of them are just waiting for you to drop dead.
As soon as you die, they’ll swoop in. This week, we learned exactly how microbes chow down on us. A brave and strong-stomached team of scientists spent months watching dead bodies decompose, tracking all the bacteria, fungi, and worms, day by day. Forensic scientists can use this timeline, published in Science, to help determine time—and even place—of death.
http://phenomena.nationalgeographic.com/2015/12/12/youre-surrounded...
Here is some good news for science communicators:
Renowned British cosmologist Stephen Hawking on Wednesday launched an award for science communication that will bear his name.
The "Stephen Hawking Medal for Science Communication" will be awarded to those who help promote science to the public through media such as cinema, music, writing and art.
"People worldwide display an incredible appetite of scientific information... The public want to know, they want to understand."
The first medals will be awarded next summer in three different categories: the scientific, artistic and film communities.
The winners will be announced at the Starmus Festival, a gathering celebrating art and science in Spain's Canary Islands that will take place from June 27 to July 2 next year.
This year's top science stories:
7. The discovery that Alzheimer's protein behaves like a prion; Why?
Under some conditions, an Alzheimer’s-related protein may have jumped between people, scientists reported this year. If true, that observation, the first of its kind, could recast the way scientists view the disease.
Scientists already had hints that the protein in question, amyloid-beta, behaves like an infectious prion, a misshapen protein that coaxes other proteins to misfold and spread from cell to cell. In a study reported in Nature, Collinge and colleagues found A-beta buildup in four of eight postmortem brains from people who had received growth hormone injections derived from cadavers. Because A-beta buildup is rare in relatively young people — all were between the ages of 36 and 51 — the finding suggests that the buildup might have been seeded by growth hormone contaminated with A-beta.
This result adds to evidence that prions may be behind Alzheimer’s disease as well as other neurodegenerative disorders such as Parkinson’s and Huntington’s. But some scientists caution that it’s too soon to label these disorders as prion diseases.
8. The genetics of cancer; Why?
Personalized genomics has been heralded as the next big weapon in the war on cancer. But researchers analyzing various tissue types this year, looking for mutations linked to the disease, have found that not all genetic alterations should be targeted equally.
Genetic profiles of tumors offer unprecedented opportunities for both cancer diagnostics and for doctors planning treatment. Bowel cancer tumors with mutations in the KRAS gene, for example, respond poorly to the drug cetuximab; the skin cancer drug vemurafenib works only if melanomas have a particular mutation in the BRAF gene.
But such genetic testing can be misleading if it isn’t conducted alongside tests of healthy cells from the same person. A vast analysis comparing the genetic profiles of tumors and normal tissue of more than 800 cancer patients found that nearly two-thirds of mutations in the studied tumors — many of which might be used to guide treatment — also showed up in patients’ healthy tissues . For those patients, the mutations were probably just benign variants unrelated to the cancer. Analyzing healthy tissue can also reveal whether mutations found in tumors are heritable or not, scientists say, which is important for deciding whether a cancer patient’s family should receive genetic counseling.
Complicating matters further is the fact that even mutations that have been linked to cancer will not always manifest as cancer. A study published in May examining eyelid skin discovered numerous cancer-associated mutations in normal, healthy patches of the skin . Detecting these mutations might lead to great anxiety and unnecessary, sometimes invasive treatments.As genetic testing of tumors becomes more widespread, best practices will emerge, as will a better understanding of the disease. Therefore, scientists working in the field are trying to change the way we look at cancer.
This year's top science stories:
4. Understanding why life got so complicated; why?
Microbes discovered in Arctic mud could be the closest relatives yet found to the single-celled ancestor that swallowed a bacterium and made life so complicated. Biologists have proposed that this swallowing event, perhaps 1.8 billion years ago, led to complex cells with membrane-wrapped organelles, the hallmark of all eukaryotes from amoebas to zebras.
Researchers discovered the new phylum of microbes, dubbed Lokiarchaeota, by screening DNA from sediment . Though no one has identified an actual cell yet, the new phylum appears to mingle genes similar to those in modern eukaryotes and genes from archaea, the sister group to bacteria. Analyses suggest the cells have dynamic structures that could have engulfed bacteria long ago. (Biologists have proposed representing that merger as a ring of life, rather than a tree.) What happened next in the tale is clearer but still a puzzle.
5. New light on Quantum Spookiness; Why?
Some loopholes no longer plague a crucial test for assessing the weirdness of quantum mechanics. Experiments reported in 2015 definitively demonstrate that the quantum world violates locality, the principle that events sufficiently separated in spacetime must be independent.
European researchers this year performed an experiment with electrons on opposite sides of a university campus, nearly 1.3 kilometers apart. In trials lasting 18 days, the team coaxed the electrons into an entangled state 245 times, reliably measuring the electrons’ spins every time. The results showed a clear nonlocal connection.
6. Epigenome effect; Why?
This yea,r Researchers cataloged how chemical modifications fold, compress and unwind the static DNA over time and how those modifications control when genes are on or off. The researchers cataloged epigenetic marks — chemical modifications either of DNA itself or proteins called histones — in more than 100 types of human cells. The epic effort revealed that gene variants associated with Alzheimer’s disease are more active in immune cells in the brain than in nerve cells as researchers had assumed. Another interesting aspect of this research:Tightly packed areas of the genome are more vulnerable to cancer-causing mutations.
Researchers using data from this project and other efforts to view the genome in 3-D have made startling discoveries . For instance, researchers found that a gene called FTO, thought to be a major genetic contributor to obesity, isn’t involved in fat production. Instead, a genetic variant hiding in the gene’s vicinity actually determines what type of fat the body builds . Disorganized DNA may be a cause of aging, researchers also discovered .
This year's top science stories:
1. Gene-editing; why? Read it here:
http://kkartlab.in/group/some-science/forum/topics/crispr-cas9-gene...
2. Biological aging; why?
A study, out of Duke University, analyzed the health of nearly one thousand 38-year-olds and found that some resembled people a decade older while others appeared years younger. Researchers determined this “biological age” based on health indicators such as body mass index, blood pressure and cholesterol level. The finding tapped into a mystery that has long captivated scientists and the public alike — “why some people can live to 120 with no disease, and others are already in bad shape at age 70”.
3. Irreproducibility problem; why?
Because scientists understood the problem and are trying to rectify it.
Experimental results that don’t hold up to replication have caused consternation among scientists for years, especially in the life and social sciences. In 2015 several research groups examining the issue reported on the magnitude of the irreproducibility problem. The news was not good.
Results from only 35 of 97 psychology experiments published in three major journals in 2008 could be replicated, researchers reported in August. The tumor-shrinking ability of the cancer drug sunitinib was overestimated by 45 percent on average, an analysis published in October showed . And a report in June found that, in the United States alone, an estimated $28 billion is spent annually on life sciences research that can’t be reproduced .
There are many possible reasons for the problem, including pressure to publish, data omission and contamination of cell cultures. Faulty statistics are another major source of irreproducibility, and several prominent scientific journals have set guidelines for how statistical analyses should be conducted. Very large datasets, which have become common in genetics and other fields, present their own challenges: Different analytic methods can produce widely different results, and the sheer size of big data studies makes replication difficult.
Perfect reproductions might never be possible in biology and psychology, where variability among and between people, lab animals and cells, as well as unknown variables, influences the results. But several groups, including the Science Exchange and the Center for Open Science, are leading efforts to replicate psychology and cancer studies to pinpoint major sources of irreproducibility.
Although there is no consensus on how to solve the problem, suggestions include improving training for young scientists, describing methods more completely in published papers and making all data and reagents available for repeat experiments.
Confirmation bias is bad for science. For example consider this conversation between an alchemist and a scientist:
Alchemist: "Hoo doo woodoo doo!" (Mixes an element to form a compound while waving his hands mystically)
Scientist: "What're you doing?"
Alchemist: "I'm making a healing salve."
Scientist: "You don't need to wave your arms about, mixing those chemicals is all you need to do to make a local anaesthetic."
Alchemist: "But I waved my arms and it worked!"
Scientist: "Really?"
Alchemist: "Yes, my waving hands has magical influence that makes the drug work!"
Scientist: This is ignorance at its best!
This is what we call confirmation bias. We look for the things that fit our idea of how things work.
© 2025 Created by Dr. Krishna Kumari Challa. Powered by
You need to be a member of Science Simplified! to add comments!