Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 1 hour ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 1 hour ago. 1 Reply 0 Likes
Q: Why don't we see mentally challenged animals?Krishna:Cognitive specialization makes cross-species comparisons more complex, while potentially identifying human cognitive uniqueness that is…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 21 hours ago. 15 Replies 2 Likes
What might happen when you take lots of medicines...One of our uncles died of liver cirrhosis ten years back. He never touched alcohol in his life. He didn't have any viral infection to cause this.…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Q: The fact that I was born because I never existed in the first place suggests that, if I never existed after death, I may eventually exist again in the future. But what about the uncertainty of…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 1 Reply 0 Likes
Q: Humans are thousands times more intelligent and prudent than animals and birds. But why do animals and birds sense natural disasters, earthquakes and storms before they occur? Why don't humans…Continue
Comment
After launching the world's first hack-free satellite, China has tested its first quantum radar which could detect objects, including stealth aircraft, within the range of 100 kilometres.
The first Chinese quantum radar was developed by the Intelligent Perception Technology Laboratory of the 14th Institute of China Electronics Technology Group Corporation (CETC)
Quantum radar is a device that uses quantum entanglement photons to provide better detection capabilities than conventional radar systems.
The method would be useful for tracking targets with a low radar cross section, such as modern aircraft using stealth technology or targets employing active countermeasures to jam or baffle enemy radar.
The technology may also find use in biomedicine, since quantum radar requires lower energy and can be used to non-invasively probe for objects with low reflectivity, such as cancer cells.
Earlier, China launched the world s first quantum communications satellite, which uses quantum entanglement for cryptography.
Explanation...
Japanese scientists have shown through simulations that four phases of a substance can coexist at thermal equilibrium, where all parts are at the same temperature and pressure—a situation that seemingly goes against the laws of thermodynamics.
For different phases to coexist in equilibrium at constant temperature T and pressure P, the condition of equal chemical potential μ must be satisfied. This condition dictates that, for a single-component system, the maximum number of phases that can coexist is three. Historically this is known as the Gibbs phase rule, and is one of the oldest and venerable rules of thermodynamics. In the paper published the researchers make use of the fact that, by varying model parameters, the Gibbs phase rule can be generalized so that four phases can coexist even in single-component systems. To systematically search for the quadruple point, they used a monoatomic system interacting with a Stillinger–Weber potential with variable tetrahedrality. Their study indicates that the quadruple point provides flexibility in controlling multiple equilibrium phases and may be realized in systems with tunable interactions, which are nowadays feasible in several soft matter systems such as patchy colloids.
http://www.nature.com/ncomms/2016/160825/ncomms12599/full/ncomms125...
"Biological Pollution"
Most countries in the world have little capacity to deal effectively with invasive species, a study suggests.
The spread of non-native species threatens livelihoods and biodiversity, but the issue is worsened by global trade, travel and climate change.
Writing in Nature Communications journal, and international team forecast how the spread of species could change over the 21st Century.
They show that one-sixth of the world's land surface is vulnerable to invasion.
However, they predict that non-native plants, animals and microbes will increasingly threaten developing countries with some of the last remaining biodiversity hotspots, due to increased air travel and the expansion of agriculture.
This could endanger livelihoods and food security in fragile economies that are ill-prepared to deal with the expansion of invasive organisms.
Rampant globalisation will lead to invasions in countries with the least capability to deal with them. Low-income countries stand to lose a lot by having their natural resources sapped by invasive species.
Invasive species often travel as stowaways or contaminants in goods imported by planes and ships. They also arrive as exotic pets or plants that subsequently escape or are released deliberately into the wild.
This can pose challenges native species that have evolved over thousands of years to be well adapted to their ecosystems. Consequently, new arrivals can quickly change the nature of a whole region and often outcompete native organisms for resources and habitat.
Burmese pythons originally arrived in the US as exotic pets, but they escaped and quickly established themselves in the Florida Everglades, where they have contributed to a catastrophic decline in native mammals.
In Europe, forests and woods have been transformed by introduced diseases and pests such as Dutch elm disease and Ash dieback.
Biological invasions in the developing world so far have included influxes of Diamondback moths, which can devastate broccoli, cabbage and other crops; Panama disease, which wiped out banana plantations in central and south America; and prickly pear, which devastated grassland in Africa, leading to cattle being malnourished.
The link between pollinator problems and neonicotinoids, a group of agricultural pesticides commonly associated with declines in honeybees, continues to build with two new studies published this week.
Within species, a population’s odds of going extinct increased with use of the pesticides, the research team worked on this writes in the August 16 Nature Communications. That goes for both wild bees that forage on oilseed rape, and those that don’t — though populations of known foragers were three times as likely to disappear.
Taken together, the results add some long-term data to the idea that even though wild species aren’t pollinating neonicotinoid-doused crops, the effects of exposure may still appear at the regional and national level.
http://www.nature.com/ncomms/2016/160816/ncomms12459/full/ncomms124...
A black hole analogue, which traps sound instead of light, generates "Hawking radiation," a key prediction by the theoretical physicist.
Stephen Hawking proposed in 1974 that quantum effects at the event horizon might cause black holes to be…not completely black.
Recently scientists observed spontaneous Hawking radiation, stimulated by quantum vacuum fluctuations, emanating from an analogue black hole in an atomic Bose–Einstein condensate. Correlations are observed between the Hawking particles outside the black hole and the partner particles inside. These correlations indicate an approximately thermal distribution of Hawking radiation. They found that the high-energy pairs are entangled, while the low-energy pairs are not, within the reasonable assumption that excitations with different frequencies are not correlated. The entanglement verifies the quantum nature of the Hawking radiation. The results are consistent with a driven oscillation experiment and a numerical simulation.
http://www.nature.com/articles/nphys3863.epdf?referrer_access_token...
Scientists think that using technology harnessing quantum physics is the key to beating electronic snoopers.
China launched the first-ever quantum satellite Monday (Aug. 15) in an effort to help develop an unhackable communications system.
The launch of the world’s first “quantum satellite” is just the beginning of China’s ambitious plans to develop a communications system that cannot be cracked by hackers, according to a lead engineer on the project.
The satellite was launched from the Jiuquan space centre in Gansu province in northwest China this week.
One of the tasks during the satellite’s mission will be to try and send coded communications back to earth that cannot be read by eavesdroppers. How is this possible? High quality Physics!
"Entangled" particles are intimately and curiously linked to each other; even if they're separated by billions of miles of space; a change in one somehow affects the others.
QUESS will send messages to ground stations using entangled photons. Such a system is theoretically impossible to hack. In addition, any attempts to eavesdrop would be picked up via an induced change in the photons' state.
It will attempt to do so by transmitting information through photons, tiny particles found in subatomic or quantum physics.
Researchers believe that information sent through photons cannot be intercepted or analysed by people without the right codes.
The mission to establish a hacker-proof communication link between space and earth requires scientists to carefully adjust the satellite’s position so it can beam single photons on to a targeted area just a few square metres wide on the ground.
They also need to test and fine tune each scientific device on the satellite . Similar ground-based quantum communications systems have also been set up in the US, Europe and Japan, but China has the largest network and is leading the development of the technology in space.
A wiretap splits off a large number of electrons to read the signal and still leaves enough electrons in the line to carry the same signal to the legitimate recipient.
A quantum network, however, carries information by photons and under the law of quantum physics it is impossible to measure their properties without altering them.
If an eavesdropper tries to copy the quantum states, this introduces errors in the transmitted key and gets noticed by the legitimate users.
Some experts think that one possible way of hacking the system a Trojan Horse. It involves firing an extra beam of light at one key part of the communications equipment and light reflected back would carry information processed by the system.
But commercial quantum network applications had been deployed in many countries, but not a single report of a security breach had been reported so far.
China thinks .. To be a quantum hacker you must have a PhD in quantum physics, that’s the minimum requirement. Such a high entry barrier will keep most hackers out of this game.
The dodgy academic journals publishing anti-vaxxers and other 'crappy science'
http://www.smh.com.au/national/the-dodgy-academic-journals-publishi...
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!