Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 6 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 9 hours ago. 1 Reply 0 Likes
Q: Why don't we see mentally challenged animals?Krishna:Cognitive specialization makes cross-species comparisons more complex, while potentially identifying human cognitive uniqueness that is…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 15 Replies 2 Likes
What might happen when you take lots of medicines...One of our uncles died of liver cirrhosis ten years back. He never touched alcohol in his life. He didn't have any viral infection to cause this.…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Q: The fact that I was born because I never existed in the first place suggests that, if I never existed after death, I may eventually exist again in the future. But what about the uncertainty of…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 1 Reply 0 Likes
Q: Humans are thousands times more intelligent and prudent than animals and birds. But why do animals and birds sense natural disasters, earthquakes and storms before they occur? Why don't humans…Continue
Comment
The dodgy academic journals publishing anti-vaxxers and other 'crappy science'
http://www.smh.com.au/national/the-dodgy-academic-journals-publishi...
Being Unfit Nearly as Harmful as Smoking!
In a recent study it was found that low levels of aerobic capacity – or being unfit – actually represented a higher death risk than high blood pressure and high cholesterol levels.
Among the risks of a premature death, only smoking cast a longer fatal shadow.
“The advantages of being physically active one’s entire life are crystal clear,” says researcher Per Ladenvall at Salgrenska Academy of the University of Gothenburg.
Why is being in poor physical shape so risky?
“Probably a lot of factors are contributing here. In addition to hypertension and high cholesterol values, those who are in poor shape often have insulin resistance or poor blood sugar regulation. Added to that, they have components in their blood which cause blood clots,” explains Ladenvall.
“They can also have poor resistance against diseases, so that when they fall ill it will more often have a fatal outcome than among persons who are fit,” he adds. Ladenvall works at the University’s Department of Molecular and Clinical Medicine.
The study also found that the better the oxygen uptake the lower the risk of early death among the men. Or to put it simply – they lived longer.
In a recent study it was found that low levels of aerobic capacity – or being unfit – actually represented a higher death risk than high blood pressure and high cholesterol levels.
Among the risks of a premature death, only smoking cast a longer fatal shadow.
“The advantages of being physically active one’s entire life are crystal clear,” says researcher Per Ladenvall at Salgrenska Academy of the University of Gothenburg.
Why is being in poor physical shape so risky?
“Probably a lot of factors are contributing here. In addition to hypertension and high cholesterol values, those who are in poor shape often have insulin resistance or poor blood sugar regulation. Added to that, they have components in their blood which cause blood clots,” explains Ladenvall.
“They can also have poor resistance against diseases, so that when they fall ill it will more often have a fatal outcome than among persons who are fit,” he adds. Ladenvall works at the University’s Department of Molecular and Clinical Medicine.
The study also found that the better the oxygen uptake the lower the risk of early death among the men. Or to put it simply – they lived longer.
For the first time scientists can see where molecular tags known as epigenetic marks are placed in the brain.
These chemical tags — which flag DNA or its protein associates, known as histones —don’t change the genes, but can change gene activity. Abnormal epigenetic marks have been associated with brain disorders such as Alzheimer’s disease, schizophrenia, depression and addiction.
Researchers at Massachusetts General Hospital in Boston devised a tracer molecule that latches onto a protein that makes one type of epigenetic mark, known as histone acetylation.
The scientists then used PET scans to detect where a radioactive version of the tracer marked the brains of eight healthy young adult men and women, the researchers report August 10 in Science Translational Medicine. Further studies could show that the marks change as people grow older or develop a disease. The team studied only healthy young volunteers so can’t yet say whether epigenetic marking changes with age or disease.
The mighty monsoon winds that periodically bring rains that drench India first billowed around 12.9 million years ago, new research shows. The work provides the best look yet at the conditions that fostered the modern monsoon.
By examining sediments piled up around Indian Ocean islands, researchers uncovered a geologic history of the South Asian monsoon stretching back tens of millions of years. The monsoon winds began abruptly, researchers report online July 20 in Scientific Reports. That speedy start-up suggests that factors such as global cooling were at play in addition to the rise of the Himalayan mountain range, which scientists typically blame for the monsoon’s inception.
Rainfall during the summer monsoon season accounts for more than 70 percent of India’s annual precipitation. The temperature difference between the continent and the adjacent Indian Ocean drives the winds. During winter, warm air over the ocean rises and draws in cool air from the land to the north. In summer, the land becomes warmer and the winds flip direction.
The snow and high elevation of the Himalayas drive the temperature difference between the land and sea. But the mountains grew over tens of millions of years, making it difficult to determine exactly when conditions favorable to the monsoon began. Previous estimates ranged from around 28.7 million to 7 million years ago.
Monsoon winds drive currents in the ocean, which in turn carry ocean sediments across the sea. Sediment accumulates in mounds similar to snowdrifts when currents are strong. The strong currents also pull nutrients from the seafloor toward the surface, boosting biological activity that in turn draws oxygen from the water. That lower oxygen supply leaves a chemical trace in the sediments.
The researchers drilled around 500 meters into the seafloor and extracted sediments dating back roughly 25 million years. A weaker precursor to the modern monsoon existed roughly 25 million years ago, the sediment data suggest. Around 12.9 million years ago, however, the winds revved up to their modern strength over the course of about 300,000 years, a relatively short time compared with the formation of the Himalayas.
The strengthening of the monsoon lines up with a period of global cooling and the growth of the polar ice caps. That climate shift may have boosted the temperature difference between the land and sea, supercharging the winds, the researchers propose.
The stimulation hypothesis
to protect soldiers from biological and chemical threats, a team of Lawrence Livermore National Laboratory scientists has created a material that is highly breathable yet protective from biological agents.
This material is the first key component of futuristic smart uniforms that also will respond to and protect from environmental chemical hazards. The research appears in the July 27 edition of the journal,Advanced Materials
The LLNL team fabricated flexible polymeric membranes with aligned carbon nanotube (CNT) channels as moisture conductive pores. The size of these pores (less than 5 nanometers, nm) is 5,000 times smaller than the width of a human hair.
To provide high breathability, the new composite material takes advantage of the unique transport properties of carbon nanotube pores. By quantifying the membrane permeability to water vapor, the team found for the first time that, when a concentration gradient is used as a driving force, CNT nanochannels can sustain gas-transport rates exceeding that of a well-known diffusion theory by more than one order of magnitude.
These membranes also provide protection from biological agents due to their very small pore size — less than 5 nanometers (nm) wide. Biological threats like bacteria or viruses are much larger and typically more than 10-nm in size.
http://onlinelibrary.wiley.com/doi/10.1002/adma.201670197/full
Transfer of mitochondria from astrocytes to neurons after stroke
Under duress, nerve cells get a little help from their friends. Brain cells called astrocytes send their own energy-producing mitochondria to struggling nerve cells. Those gifts may help the neurons rebound after injuries such as strokes, scientists propose in the July 28 Nature.
It was known that astrocytes — star-shaped glial cells that, among other jobs, support neurons — take in and dispose of neurons’ discarded mitochondria. Now it turns out that mitochondria can move the other way, too. This astrocyte-to-neuron transfer is surprising.
Mitochondria produce the energy that powers cells in the body. Scientists have spotted the organelles moving into damaged cells in other parts of the body, including the lungs, heart and liver. The new study turns up signs of this mitochondrial generosity in the brain.
Not only do the mitochondria make it into neurons, they actually help. Neurons with donated mitochondria better survived their starvation diet. When grown in dishes without extra mitochondria floating around, neurons were less able to weather the poor conditions, the researchers found.
Further experiments suggest that the transfer happens not just in lab dishes, but in the brains of mice. A day after mice received a strokelike injury, astrocyte-produced mitochondria showed up inside their neurons. The gift giving seems to depend on a protein called CD38, which sits on the outside of astrocytes and may detect distress signals. When CD38 wasn’t functioning, the mice had fewer mitochondria in their neurons. What’s more, the mice were worse at balancing on wires than mice with normal CD38 behavior, a deficit that may be linked to having too few mitochondria in neurons.
The results bolster the idea that mitochondria donations between cells may have tremendous therapeutic potential
http://www.nature.com/nature/journal/v535/n7613/full/nature18928.html
Over the last year, beekeepers in some parts of the world lost nearly half of their honeybee hives. And there are a lot of suspected culprits for this so-called beepocalypse—from parasitic mites, to viruses, to simple land use changes. But a recent study pointed to another possibility: poor sperm quality among the drone bees, leading to colony crashes. And now another group of researchers may have found a reason for the subpar sperm: neonicotinoid pesticides. These substances contain chemicals similar to nicotine and affect insect nervous systems.
"So for the drones that were exposed to pesticides during development, it appears there were more dead sperm in their reproductive tracts."
Williams and his colleagues studied the effects of two neonicotinoid pesticides on honeybee drones, genetically assigned to mate with queens.
But in 20 honeybee hives Williams and his collaborators found that those drones exposed to standard environmental levels of the pesticides were shorter-lived, thus having fewer opportunities to mate. And even if the drones did survive, they had nearly 40 percent fewer living sperm than did control bees—meaning the pesticides were acting like honeybee contraceptives.
http://rspb.royalsocietypublishing.org/content/283/1835/20160506
Io’s Atmosphere Collapses
Jupiter's shadow makes this volcanic moon's atmosphere freeze solid once per day
Jupiter's active moon Io has a collapsible atmosphere: New views show the satellite's shroud of sulfur dioxide freezing when Io enters its planet's shadow each day and converting back to gas when the moon emerges.
Io, Jupiter's fifth moon, is the solar system's most volcanically active body; plumes of the sulfur dioxide gas bursts from multiple active volcanoes, reaching up to 300 miles (480 kilometers) above the moon's surface at a scalding 3,000 degrees Fahrenheit (1,650 degrees Celsius). The Jupiter moon's surface, on the other hand, is frigidly cold, and gets even colder when Jupiter blocks out the sun—which prompts the atmospheric collapse.
Io's atmosphere is in a constant state of collapse and repair, and shows that a large fraction of the atmosphere is supported by sublimation of sulfur dioxide ice
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!