Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 1 hour ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 2 hours ago. 1 Reply 0 Likes
The problem is simple: it's hard to know whether a photo's real or not anymore. Photo manipulation tools are so good, so common and easy to use, that a picture's truthfulness is no longer…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 12 Replies 0 Likes
Headlines in the media screaming: Humans dump 8 million tonnes of plastics into the oceans each year. That's five grocery bags of plastic for every foot of coastline in the world.Plastic, plastic,…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 1 Reply 0 Likes
As we age, it's common to notice posture changes: shoulders rounding, head leaning forward, back starting to curve. You might associate this with older adults and wonder: will this happen to me? Can…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Live and on-demand video constituted an estimated …Continue
Comment
In total, the researchers identified ninety (only 90? Come on, we ourselves 're involved in atleast 10, these researchers don't know about the incidents in India, then) incidents between 2010 and 2023. The team then conducted a systematic content analysis of the articles to categorize the problems mentioned: half of the traffic disruptions reported were traffic jams, while a third were caused by through traffic of heavy vehicles, especially on roads that were not designed for such volumes of traffic.
Reports of traffic rule violations and disturbances to residents were less common. The latter were caused, for example, by long lines of cars preventing drivers from being able to back out of their private parking spaces.
The safety hazards mentioned in the newspaper reports concerned accidents in a third of cases, but also damage to road surfaces and pollution.
Through studies such as this one, the team not only wants to categorize the problems perceived by society, but also develop solutions. The evaluation showed that in most cases, the aim is only to make adjustments at the local level.
The research team also has another suggestion that does not completely delegate responsibility to technology: the system could provide users with additional information about the suggested routes—and then let them choose for themselves.
It would be nice if people could voluntarily choose to be more considerate by providing the full information, they say.
Eve Schade et al, Traffic jam by GPS: A systematic analysis of the negative social externalities of large-scale navigation technologies, PLOS ONE (2024). DOI: 10.1371/journal.pone.0308260
Part 2
**
We know this for sure!
Drivers blindly follow GPS instructions instead of paying attention to signs. Blindly following GPS navigation can lead to difficult situations on the road. A research team has analyzed such incidents and is in favour of delegating more personal responsibility to drivers.
As useful as GPS-controlled navigation systems are in everyday life, they often lead people astray and trigger outrage. Sometimes they even guide cars and lorries onto very challenging roads, unnecessarily endangering everyone involved.
(We know how the GPS took vehicles into water bodies, strange areas and put people into dangerous situations)
This is a technology that is used by more than a billion people worldwide. That's why it's important to understand the social implications.
Since there is no publicly available documentation, the researchers used a different method: they systematically combed the LexisNexis news database for newspaper articles and internet posts about incidents in which navigation systems caused chaos and problems. To avoid complications due to translations, they only looked at English texts, which unsurprisingly reported mostly on events in English-speaking countries. But as the examples above illustrate, such incidents also occur in other areas around the world. Yeah, in India for sure.
In societies where navigation apps are increasingly used, we can expect to see more of these types of situations in the future.
Part 1
A new study shows the remarkable adaptability of the critically endangered Cat Ba langurs. Despite low genetic diversity, the langurs have retained key genetic traits that help them survive in their isolated environment on Cat Ba Island in Vietnam. One of these remarkable adaptations is the ability to drink salt water.
The study is dedicated to the genetic challenges faced by the fewer than 100 remaining individuals of this primate species. Due to the dramatic decline of its population, the species suffers from genetic impoverishment, high inbreeding and a potentially increased susceptibility to disease. Nevertheless, analysis of their genetic information shows that genetic diversity has been maintained in functionally important areas of their genetic information. This enables the Cat Ba langurs (Trachypithecus poliocephalus) to continue to cope adequately with changing environmental conditions.
Their adaptability makes the animals unique. Drinking salt water is an outstanding example of this.
This extraordinary ability is a direct consequence of their isolated island home, where there are only limited freshwater sources. The researchers show that changes in certain genes have probably increased tolerance to salt water. These genetic adaptations enable langurs to cope with the high sodium content of salt water and thus contribute to their survival in this unique environment.
The research is published in the journal Nature Communications.
Liye Zhang et al, Genomic adaptation to small population size and saltwater consumption in the critically endangered Cat Ba langur, Nature Communications (2024). DOI: 10.1038/s41467-024-52811-7
A wing's teardrop form forces air to flow quickly over its top, creating a low-pressure area that pulls the plane up. At the same time, air pushes against the bottom of the wing, adding upward pressure. Designers call the combination of this pull and push "lift." Changes in flight conditions or a drop in an aircraft's speed can result in stall, rapidly reducing lift.
The study uncovered the physics by which the flaps improved lift and identified two ways that the flaps control air moving around the wing. One of these control mechanisms had not been previously identified.
The researchers uncovered the new mechanism, called shear layer interaction, when they were testing the effect of a single flap near the front of the wing. They found that the other mechanism is only effective when the flap is at the back of the wing.
The researchers tested configurations with a single flap and with multiple flaps ranging from two rows to five rows. They found that the five-row configuration improved lift by 45%, reduced drag by 30% and enhanced the overall wing stability.
The discovery of this new mechanism unlocked a secret behind why birds have these feathers near the front of the wings and how we can use these flaps for aircraft. Especially because we found that the more flaps you add to the front of the wing, the higher the performance benefit.
This is the power of bioinspired design!
Wissa, Aimy, Distributed feather-inspired flow control mitigates stall and expands flight envelope, Proceedings of the National Academy of Sciences (2024). DOI: 10.1073/pnas.2409268121. doi.org/10.1073/pnas.2409268121
Part 2
Taking inspiration from bird feathers, engineers have found that adding rows of flaps to a remote-controlled aircraft's wings improves flight performance and helps prevent stalling, a condition that can jeopardize a plane's ability to stay aloft.
These flaps can both help the plane avoid stall and make it easier to regain control when stall does occur.
The flaps mimic a group of feathers, called covert feathers, that deploy when birds perform certain aerial maneuvers, such as landing or flying in a gust. Biologists have observed when and how these feathers deploy, but no studies have quantified the aerodynamic role of covert feathers during bird flight.
Engineering studies have investigated covert-inspired flaps for improving engineered wing performance, but have mostly neglected that birds have multiple rows of covert feathers. The present study has advanced the technology by demonstrating how sets of flaps work together and exploring the complex physics that governs the interaction.
This new the technique is an easy and cost-effective way to drastically improve flight performance without additional power requirements.
The covert flaps deploy or flip up in response to changes in airflow, requiring no external control mechanisms. They offer an inexpensive and lightweight method to increase flight performance without complex machinery. They're essentially just flexible flaps that, when designed and placed properly, can greatly improve a plane's performance and stability.
Part 1
Drawing on evidence involving about 25 million people worldwide, an international research team led by the Max Planck Institute for Chemistry demonstrates that long-term exposure to ambient PM2.5 significantly increases the risk of asthma, affecting both children and adults. The researchers find that approximately 30% of new asthma cases worldwide were linked to fine particulate matter (PM2.5) exposure, highlighting the dramatic threat air pollution poses to public health.
Asthma is currently an incurable disease that severely impairs quality of life, with recurring symptoms such as wheezing, coughing, and shortness of breath. As of today, about 4% of the world's population suffers from asthma, with more than 30 million new cases arising annually.
Evidence suggests that long-term exposure to air pollution of fine particulate matter (PM2.5) is an important risk factor for developing asthma.
Researchers have conducted a comprehensive global meta-analysis and found this is correct.
The research team determined the data from 68 epidemiological studies from 2019 conducted across 22 countries, including those in North America, Western Europe, East Asia, South Asia, and Africa. They conclude that there is now sufficient evidence with high confidence level to support an association between long-term exposure to ambient PM2.5 and asthma.
Ruijing Ni et al, Long-term exposure to PM2.5 has significant adverse effects on childhood and adult asthma: A global meta-analysis and health impact assessment, One Earth (2024). DOI: 10.1016/j.oneear.2024.09.022
During the rehearsal, the scientists used trapped protons as a stand-in for antiprotons. Protons are a key ingredient of every atom, the simplest of which is hydrogen (one proton and one electron.) But storing protons as loose particles and then moving them onto a truck is a challenge because any tiny disturbance will draw the unbonded protons back into an atomic nucleus.
When it's transported by road, our trap system is exposed to acceleration and vibrations, and laboratory experiments are usually not designed for this. Scientists needed to build a trap system that is robust enough to withstand these forces, and they have now put this to a real test for the first time.
the biggest potential hurdle isn't currently the bumpiness of the road but traffic jams.
If the transport takes too long, they will run out of helium at some point.
Liquid helium keeps the trap's superconducting magnet at a temperature below 8.2 Kelvin: its maximum operating temperature. If the drive takes too long, the magnetic field will be lost and the trapped particles will be released and vanish as soon as they touch ordinary matter.
Eventually, they want to be able to transport antimatter to our dedicated precision laboratories at the Heinrich Heine University in Düsseldorf, which will allow us to study antimatter with at least 100-fold improved precision
In the longer term, they want to transport it to any laboratory in Europe. This means that they need to have a power generator on the truck. They are currently investigating this possibility.
After this successful test, which included ample monitoring and data-taking, the team plans to refine its procedure with the goal of transporting antimatter next year.
"This is a totally new technology that will open the door for new possibilities of study, not only with antiprotons but also with other exotic particles, such as ultra-highly-charged ions.
Another experiment, PUMA, is preparing a transportable trap. Next year, it plans to transport antiprotons 600 meters from the ADH hall to CERN's ISOLDE facility in order to use them to study the properties and structure of exotic atomic nuclei.
Source: CERN
Part 3
Antimatter is a naturally occurring class of particles that is almost identical to ordinary matter except that the charges and magnetic properties are reversed.
According to the laws of physics, the Big Bang should have produced equal amounts of matter and antimatter. These equal-but-opposite particles would have quickly annihilated each other, leaving a simmering but empty universe. Physicists suspect that there are hidden differences that can explain why matter survived and antimatter all but disappeared.
The BASE experiment aims to answer this question by precisely measuring the properties of antiprotons, such as their intrinsic magnetic moment, and then comparing these measurements with those taken with protons. However, the precision the experiment can achieve is limited by its location.
The accelerator equipment in the AD hall generates magnetic field fluctuations that limit how far we can push our precision measurements.
If scientists want to get an even deeper understanding of the fundamental properties of antiprotons, they need to move out.
This is where BASE-STEP comes in. The goal is to trap antiprotons and then transfer them to a facility where scientists can study them with a greater precision. To be able to do this, they need a device that is small enough to be loaded onto a truck and can resist the bumps and vibrations that are inevitable during ground transport.
The current apparatus—which includes a superconducting magnet, cryogenic cooling, power reserves, and a vacuum chamber that traps the particles using magnetic and electric fields—weighs 1,000 kilograms and needs two cranes to be lifted out of the experimental hall and onto the truck. Even though it weighs a ton, BASE-STEP is much more compact than any existing system used to study antimatter. For example, it has a footprint that is five times smaller than the original BASE experiment, as it must be narrow enough to fit through ordinary laboratory doors.
Part 2
Antimatter might sound like something out of science fiction, but at the CERN Antiproton Decelerator (AD), scientists produce and trap antiprotons every day. The BASE experiment can even contain them for more than a year—an impressive feat considering that antimatter and matter annihilate upon contact.
The CERN AD hall is the only place in the world where scientists are able to store and study antiprotons. But this is something that scientists working on the BASE experiment hope to change one day with their subproject BASE-STEP: an apparatus designed to store and transport antimatter.
Most recently, the team of scientists and engineers took an important step towards this goal by transporting a cloud of 70 protons in a truck across CERN's main site.
If you can do it with protons, it will also work with antiprotons. The only difference is that you need a much better vacuum chamber for the antiprotons.
This is the first time that loose particles have been transported in a reusable trap that scientists can then open in a new location and then transfer the contents into another experiment. The end goal is to create an antiproton-delivery service from CERN to experiments located at other laboratories.
Part 1
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!