SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 7 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

My answers to questions on science -4

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 10 hours ago. 1 Reply

Q: Why does it feel very sultry when it rains in summer? Krishna: :)When I was very young, a person gave this answer to this Q when I asked him  - when it rains in the summer all the heat in the…Continue

Why did science deviate from philosophy ?

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Wednesday. 1 Reply

Q: Isaac Newton was a “natural philosopher,” not known in his time as a “scientist,” yet is now seen as one of the greatest scientists. There was a split between natural science and the humanities…Continue

Scientists Reveal Where Most 'Hospital' Infections Actually Come From

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Monday. 1 Reply

Health care providers and patients have traditionally thought that infections patients get while in the hospital are caused by superbugs…Continue

STRANGE ENCOUNTERS AT THE FRONTIERS OF OUR SEPARATE WORLDS

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Apr 13. 1 Reply

A person asked me just now why we treat people who have strangebeliefs as inferior in mental health.And this 's my reply to him:Inferior in mental health? No, we don't think so.But let me explain a…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on March 15, 2024 at 11:59am

Can you get electrocuted by an electric vehicle?

Electric cars, scooters and bikes are everywhere. Are they safe? An expert breaks down the safety of EV and lithium-ion batteries when they encounter water.

It is highly unlikely that a Tesla submerged in a pond in  fatal accident poses a threat of electrocution to its driver or rescuers.

Battery compartments in electric vehicles such as Tesla are completely sealed and well protected.

Most electric vehicles, according to the U.S. Department of Energy, like most portable consumer electronics such as smartphones and laptops as well as electric scooters and e-cigarettes are powered by lithium-ion batteries. Lithium-ion batteries store more energy per unit mass and volume and have a high power-to-weight ratio, high energy efficiency, good high-temperature performance, long life and low self-discharge.

An EV battery may get damaged in an accident or punctured by a sharp object. In that case, the electrodes of the opposite charge might touch each other due to damage, which can start a runway reaction.

The battery would start to overheat due to all the electricity being released at once in the uncontrollable process. The temperature of the battery can quickly reach 900°C, or more than 1,650°F and it can catch fire or explode.

When an electric vehicle goes under water the water is unlikely to enter the battery compartment.

There are codes and standards relating to electric vehicles, which particularly deal with a battery pack and how it is protected and sealed.

A vehicle manufactured in the U.S. would fully comply with those requirements. In the case of Tesla vehicles, they are equipped with a number of built-in sensors that can shut the battery off in case of a crash or rollover.

However, the experts are more worried about electric scooters and electric bikes, which also have lithium-ion batteries.They don't have good battery protection from damage, unlike electric  cars.

First responders still have to know that the submerged car is an electric vehicle,  before attempting a rescue. 

If they properly comply with the safety standards, whether it's in an accident or a submergence, [they should be safe].

Source:  Northeastern University

Comment by Dr. Krishna Kumari Challa on March 15, 2024 at 11:49am

Scientists can now remove nanoplastics from your water with 94% efficiency

Researchers have created a new technology that can remove harmful nanoplastics from contaminated water with 94% efficiency. The study, "Utilization of epoxy thermoset waste to produce activated carbon for the remediation of nano-plastic contaminated wastewater," was published in the journal Separation and Purification Technology.

The amount of plastic pollution in our ecosystem has become an increasingly alarming concern globally. Concerns have frequently been flagged about the impact that plastic pollution has on the toxicity to the environment and humans.

The impact of nanoplastics, material that is a thousand times smaller than microplastics, has been found to have a significant detrimental effect on aquatic and human life. However, the options that can eliminate nanoplastics from oceans and lakes are limited.

A team of researchers, who specialize in polymer engineering, tackled a new method to address small plastic waste and remove nanoplastics from wastewater systems.

They used epoxy, a waste polymer that can't be reused or reprocessed and often ends up in landfills or finds its way into water system networks like lakes or streams.

Using a process called thermal decomposition, the researchers converted epoxy into activated carbon, a material capable of removing nanoplastics.

The researchers then used the activated carbon to treat water contaminated by nanoplastics after producing nanoplastics from polyethylene terephthalate, a form of polyester often used in plastic water bottles and clothing such as fleece.

These tiny contaminants pose a greater health risk compared to microplastics as they can penetrate cells and are hard to detect. The 94% removal efficiency of nanoplastics was achieved by physically trapping the nanoplastics in the porous structure of the waste plastic, which generated activated carbon.

Rachel Blanchard et al, Utilization of epoxy thermoset waste to produce activated carbon for the remediation of nano-plastic contaminated wastewater, Separation and Purification Technology (2023). DOI: 10.1016/j.seppur.2023.124755

Comment by Dr. Krishna Kumari Challa on March 15, 2024 at 11:35am

Researchers develop dual anti-tumour vaccine

a research team has discovered that exosomes derived from γδ-T cells not only have direct anti-tumor effects but also, when developed into a tumor vaccine, can effectively induce a tumor-specific immune response. The findings, which provide a new approach to cancer treatment, were published in the Journal of Extracellular Vesicles.

Exosomes are nanoscale particles secreted by cells, carrying various substances, such as lipids, proteins and nucleic acids, that play a crucial role in intercellular communication. Exosomes have been explored for developing tumor vaccines, as they can protect vaccine components from degradation, improve stability, extend the biological half-life, and enhance antigen uptake by antigen-presenting cells (APCs).

Previous studies focused on exosomes derived from tumor cells (TExos) and dendritic cells (DC-Exos) but found limitations in terms of safety and clinical efficacy.

In this study, the research team focused on exosomes derived from human γδ-T cells, a rare subset of T cells known for their direct anti-tumor activity and ability to enhance T-cell responses.

The research team discovered that γδ-T cell-derived exosomes (γδ-T-Exos) exhibited dual anti-tumor activities by carrying cytotoxic and immunostimulatory molecules that can directly kill tumor cells and stimulate the immune system.

They found that γδ-T-Exos has adjuvant effects, enhancing the expression of antigen-presenting and releasing molecules that promote inflammation, which improves the ability of the immune system to recognize and attack tumor cells.

Developing tumor vaccines by loading γδ-T-Exos with tumor-associated antigens proved more effective in promoting tumor-specific T-cell responses than using γδ-T-Exos alone. The vaccine strategy also retained direct anti-tumor effects and induced tumor cell death.

Intriguingly, the research showed that vaccines based on allogeneic γδ-T-Exos (derived from different individuals) exhibited similar preventive and therapeutic effects as vaccines based on autologous γδ-T-Exos (derived from the same individual) in mouse models. This suggests that this approach is suitable for centralized and standardized production. The vaccines have dual anti-tumor capabilities in effectively killing tumor cells and indirectly inducing a T-cell-mediated anti-tumor immune response, leading to better tumor control than existing vaccine strategies.

Xiwei Wang et al, Tumor vaccine based on extracellular vesicles derived from γδ‐T cells exerts dual antitumor activities, Journal of Extracellular Vesicles (2023). DOI: 10.1002/jev2.12360

Comment by Dr. Krishna Kumari Challa on March 15, 2024 at 11:19am

 Researchers observe how energy of single electron is tuned by surrounding atoms

Physicists  have choreographed the shift of a quantized electronic energy level with atomic oscillations faster than a trillionth of a second.

Throwing a ball into the air, one can transfer arbitrary energy to the ball such that it flies higher or lower. One of the oddities of quantum physics is that particles, e.g., electrons, can often only take on quantized energy values—as if the ball was leaping between specific heights, like steps of a ladder, rather than flying continuously.

Qubits and quantum computers as well as light-emitting quantum dots make use of this principle. However, electronic energy levels can be shifted by collisions with other electrons or atoms. Processes in the quantum world usually take place on atomic scales and are also incredibly fast.

Using a novel type of ultrafast microscope, a team of physicists has now succeeded in directly observing with atomic resolution on ultrafast timescales how the energy of a single electron is tuned by the vibrations of the surrounding atoms. Remarkably, they were also able to specifically control this process. Such discoveries could be crucial for the development of super-fast quantum technologies.

The physicists used an atomically thin material to investigate how a discrete energy level changes when this atomic layer moves up and down like the membrane of a drum. They observed this at a vacancy—the void left behind when an individual atom is removed.

Such atomically thin two-dimensional crystals, known for their versatile, customizable electronic properties, are particularly interesting for future nanoelectronics. Vacancies in a crystal are promising candidates for qubits, the elementary information carriers of quantum computers, as they have discrete electronic energy levels just like atoms.

The researchers found that they can change a discrete energy level of the defect by triggering a drum-like vibration of the atomically thin membrane: the atomic motion of the surrounding atoms shifts and thus controls the energy level of the vacancy.

The work establishes a new era in the study of the dynamics of atomically localized energy levels and their interaction with the environment. This discovery enables the local control of discrete energy levels in the most direct way. For instance, the motion of individual atoms could change the energy structure of a material and thus create new functionalities or specifically change the properties of light-emitting semiconductors and molecules.

Carmen Roelcke et al, Ultrafast atomic-scale scanning tunnelling spectroscopy of a single vacancy in a monolayer crystal. Nature Photonicswww.nature.com/articles/s41566-024-01390-6

Comment by Dr. Krishna Kumari Challa on March 15, 2024 at 10:07am

97% of sampled Antarctic seabirds found to have ingested microplastics

Anthropogenic plastic pollution is often experienced through evocative images of marine animals caught in floating debris, yet its reach is far more expansive. The polar regions of the Arctic and Antarctica are increasingly experiencing the impacts of plastic reaching floating ice and land, not solely as larger macroplastics (>5 cm), but as microplastics (0.1 µm—5 mm) and nanoplastics (<0.1 µm) that may be carried vast distances from their source or be ingested in more populated areas during seasonal migration.

A new review, published in Frontiers in Marine Science, has investigated the scale of this issue, particularly with respect to seabirds who call these glaciated regions home.

Across >1,100 samples, the researchers explored stomach contents, crop pouch near the throat for temporary food storage during foraging trips, guano (excrement mixture of food and metabolic waste) and regurgitated pellets of undigested food and other particles. Pellets formed the main component of the samples, followed by stomach contents and guano, while pouch contents were minimally present.

They found that 13 species of seabird inhabiting polar landscapes were reported to have ingested microplastics, including little auks, northern fulmars, glaucous gulls, thick-billed murres, white-chinned petrels, great shearwaters, sooty shearwaters, king penguins, Adélie penguins, chinstrap penguins, gentoo penguins, brown skuas and south polar skuas.

A total of 3,526 particles were extracted from these seabird samples, equating to at least 1 microplastic particle in 90% of Arctic samples and 97% for Antarctica. A median of 31.5 and 35, and average of 7.2 and 1.1, microplastic particles were found in each sample in the Arctic and Antarctica respectively. A maximum of 36 microplastic particles were found in a single bird.

Regarding plastic composition, 14 polymer types were identified, the dominant form being polyethylene, followed by polypropylene and polystyrene. These were predominantly present as fragments, derived from the breakdown of larger plastic objects. Such plastic polymer types can be sourced from items like plastic bags, food and drink containers and protective foam packaging.

The impact ingestion of plastic particles can have on seabirds includes blockage of their gastrointestinal tract, toxicity and oxidative stress, as well as triggering immune reactions. Additionally, it is not only direct ingestion of particles that is of concern, as microplastics have been found in krill, a food source for some penguins, highlighting the larger-scale issue in the ecosystem and trophic webs.

 Davide Taurozzi et al, Seabirds from the poles: microplastics pollution sentinels, Frontiers in Marine Science (2024). DOI: 10.3389/fmars.2024.1343617

Comment by Dr. Krishna Kumari Challa on March 14, 2024 at 12:18pm

Temperature sensing is an essential function of all living organisms. Animals, including humans, use so-called transient receptor potential (TRP) channel molecules to sense temperature. These channel molecules are ion channel proteins that transport ions across cell membranes. They also act as temperature-sensing molecules because their function changes in response to temperature variation. By contrast, plants do not have temperature-sensing molecules such as TRP channels. Therefore, the mechanism by which plants sense temperature has been a mystery.

In this study, the research group focused attention on the fact that S. saman, which performs nyctinasty by folding its leaves at night and opening them in the morning, also folds its leaves when it rains. According to another report in 2018, nyctinasty in S. saman is regulated by SPORK2, an ion channel found in cells at the base of the leaf. This time, the research group found that this leaf folding is also triggered by temperature changes. They also found that SPORK2, like the TRP channel, changes its ion transport activity in response to temperature. Genes similar to SPORK2 (orthologs: genes derived from a common ancestral gene through species divergence) are found in other plants aside from S. saman.

Ion channels are proteins that form holes in the cell membrane through which ions are allowed to pass. The TRP channel creates holes for sodium and calcium ions, whereas SPORK2 generates holes for potassium ions. The activities of SPORK2 orthologs in Arabidopsis thaliana were also examined and they were found to be temperature-sensitive ion channels.

Crop production has been severely affected by climate change. Shedding light on the mechanisms by which plants adapt to temperature changes is an urgent issue for stable food production.

https://www.cell.com/current-biology/abstract/S0960-9822(23)01458-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982223014586%3Fshowall%3Dtrue

Part 2

Comment by Dr. Krishna Kumari Challa on March 14, 2024 at 12:16pm

Researchers discover plant temperature sensor molecule: The Rain Tree folds its leaves in the rain

A research group led by Professor Minoru Ueda and Graduate Student Yuki Muraoka of the Graduate School of Science at Tohoku University announced that they have clarified the identity of temperature-sensitive ion channels in plants. Focusing on the phenomenon of the legume tree Samanea saman (also known as the Rain Tree), which folds its leaves when it rains, the researchers found that a decrease in leaf temperature triggers the folding movement. Aside from the temperature effect on leaf folding, the research group also found that the ion channel SPORK2, which is present in cells at the base of the leaf, functions as a sensor molecule to detect temperature changes. These findings are expected to lead to the elucidation of the temperature-sensing mechanism in plants and were published in the November 28 issue of the journal Current Biology.

 The phenomenon of rain tree leaves closing when it rains has led to the discovery of temperature sensors in plants.
Provided by Tohoku University
Page 1
Comment by Dr. Krishna Kumari Challa on March 14, 2024 at 9:21am

Astronauts completed health screenings and a questionnaire about their headache history before the flight. During space flight, astronauts filled out a daily questionnaire for the first seven days and a weekly questionnaire each following week throughout their stay in the space station.

The astronauts reported 378 headaches in flight. Researchers found that 92% of astronauts experienced headaches during flight compared to just 38% of them experiencing headaches prior to flight.

Of the total headaches, 170, or 90%, were tension-type headache and 19, or 10%, were migraine.

Researchers also found that headaches were of a higher intensity and more likely to be migraine-like during the first week of space flight. During this time, 21 astronauts had one or more headaches for a total of 51 headaches. Of the 51 headaches, 39 were considered tension-type headaches and 12 were migraine-like or probable migraine.

In the three months after return to Earth, none of the astronauts reported any headaches.

This research does not prove that going into space causes headaches; it only shows an association. A limitation of the study was that astronauts  reported their own symptoms. 

https://www.neurology.org/doi/10.1212/WNL.0000000000209224

Comment by Dr. Krishna Kumari Challa on March 14, 2024 at 9:18am

Astronauts experience 'space headaches'

Space travel and zero gravity can take a toll on the body. A new study has found that astronauts with no prior history of headaches may experience migraine and tension-type headaches during long-haul space flight, which includes more than 10 days in space. The study was published in Neurology.

Changes in gravity caused by space flight affect the function of many parts of the body, including the brain.

The vestibular system, which affects balance and posture, has to adapt to the conflict between the signals it is expecting to receive and the actual signals it receives in the absence of normal gravity. This can lead to space motion sickness in the first week, of which headache is the most frequently reported symptom. This new study shows that headaches also occur later in space flight and could be related to an increase in pressure within the skull.

The study involved 24 astronauts from the European Space Agency, the U.S. National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency. They were assigned to International Space Station expeditions for up to 26 weeks from November 2011 to June 2018.

Prior to the study, nine astronauts reported never having any headaches and three had a headache that interfered with daily activities in the last year. None of them had a history of recurrent headaches or had ever been diagnosed with migraine.

Of the total participants, 22 astronauts experienced one or more episodes of headache during a total of 3,596 days in space for all participants.

Part 1

Comment by Dr. Krishna Kumari Challa on March 14, 2024 at 9:07am

With this platform, you can bust biofilms without surgically debriding infections, which can be necessary when using antibiotics. Plus, this method could treat patients if they are allergic to antibiotics or are infected by strains that are resistant to medication. The fact that this method is antibiotic-free is a huge bonus. 

The researchers assessed their strategy by applying the gold nanoparticles atop S. mutans-infected teeth from ex vivo rat jaws.

In a photoacoustic imaging test on the teeth, the nanoparticles emitted signals that came through loud and clear, allowing the team to see precisely where biofilms had taken up the dextran-coated particles on the teeth.

Then, to evaluate the particles' therapeutic effect, they irradiated the teeth with a laser. For comparison, they treated other infected teeth samples with the topical antiseptic chlorhexidine.

The team observed a stark contrast in the outcomes of the two treatments, with the photothermal therapy being nearly 100% effective at killing biofilms, while chlorhexidine did not significantly diminish the viability of bacteria.

The treatment method is especially fast for the oral infection.

Evaluations conducted on mice with open wounds in their skin, infected with Staphylococcus aureus, were similarly successful, as heat generated by nanoparticles greatly outperformed another antimicrobial agent called gentamicin. Here, the researchers also measured and noted a rise in temperature of 20°C localized to the biofilm, not causing any apparent damage to surrounding tissue.

 Maryam Hajfathalian et al, Theranostic gold-in-gold cage nanoparticles enable photothermal ablation and photoacoustic imaging in biofilm-associated infection models, Journal of Clinical Investigation (2023). DOI: 10.1172/JCI168485

Part 2

 

Members (22)

 
 
 

Badge

Loading…

© 2024   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service