SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: yesterday

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

Cancer Questions

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply

Q: Is it a fact that cancer is also genetically inherited? If so, how much percentage of cancer affected patients have genetically inherited cancer? K: While most cancers are not directly inherited,…Continue

What are wet bulb and dry bulb temperatures?

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply

Q: What are wet bulb and dry bulb temperatures?Krishna: Dry bulb temperature is the temperature of the air as measured by a standard thermometer, while wet bulb temperature is the temperature…Continue

Vaccine woes

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 12 Replies

Recent measles outbreak in the California state of the US ( now spread to other states too) tells an interesting story.Vaccines are not responsible for the woes people face but because of rejection…Continue

Ask any astronaut whether what he is sensing in space is objective reality or subjective reality.

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply

Q: What is the definition of subjective reality? What is the definition of objective reality?Krishna: A person asked me this question sometime back:Why does our thinking differ so much? We are from…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on August 22, 2024 at 10:06am

How much does your phone's blue light really delay your sleep? Relax, it's just 2.7 minutes!

It's one of the most pervasive messages about technology and sleep. We're told bright, blue light from screens prevents us falling asleep easily. We're told to avoid scrolling on our phones before bedtime or while in bed. We're sold glasses to help filter out blue light. We put our phones on "night mode" to minimize exposure to blue light.

But what does the science actually tell us about the impact of bright, blue light and sleep? When a group of sleep experts from Sweden, Australia and Israel compared scientific studies that directly tested this, they   found the overall impact was close to meaningless. Sleep was disrupted, on average, by less than three minutes.

Scientists showed the message that blue light from screens stops you from falling asleep is essentially a myth, albeit a very convincing one.

Instead, they found a more nuanced picture of technology and sleep.

https://www.sciencedirect.com/science/article/pii/S1087079224000376...

Part 1

Comment by Dr. Krishna Kumari Challa on August 22, 2024 at 10:01am

Mother's gut microbiome during pregnancy shapes baby's brain development, mouse study finds

A study in mice has found that the bacteria Bifidobacterium breve in the mother's gut during pregnancy supports healthy brain development in the fetus. The results are published in the journal Molecular Metabolism.

Researchers have compared the development of the fetal brain in mice whose mothers had no bacteria in their gut, to those whose mothers were given Bifidobacterium breve orally during pregnancy, but had no other bacteria in their gut.

Nutrient transport to the brain increased in fetuses of mothers given Bifidobacterium breve, and beneficial changes were also seen in other cell processes relating to growth.

Bifidobacterium breve is a 'good bacteria' that occurs naturally in our gut, and is available as a supplement in probiotic drinks and tablets.

Obesity or chronic stress can alter the gut microbiome of pregnant women, often resulting in fetal growth abnormalities. The babies of up to 10% of first-time mothers have low birth weight or fetal growth restriction. If a baby hasn't grown properly in the womb, there is an increased risk of conditions like cerebral palsy in infants and anxiety, depression, autism, and schizophrenia in later life.

These results suggest that improving fetal development—specifically fetal brain metabolism—by taking Bifidobacterium breve supplements while pregnant may support the development of a healthy baby.

Previous work by the same team of researchers found that treating pregnant mice with Bifidobacterium breve improves the structure and function of the placenta. This also enables a better supply of glucose and other nutrients to the developing fetus and improves fetal growth.

Although further research is needed to understand how these effects translate to humans, this exciting discovery may pave the way for future clinical studies that explore the critical role of the maternal microbiome in supporting healthy brain development before birth.

Jorge Lopez-Tello et al, Maternal gut Bifidobacterium breve modifies fetal brain metabolism in germ-free mice, Molecular Metabolism (2024). DOI: 10.1016/j.molmet.2024.102004

**

Comment by Dr. Krishna Kumari Challa on August 22, 2024 at 9:51am

To initiate the process, hair follicle stem cells (HFSCs), located in the "bulge" of the follicle's upper root sheath, signal to epithelial and mesenchymal cells, sparking growth. This stage takes its time, lasting from two to six years.

The destructive, or catagen, stage that follows is brief but intense, obliterating about 80% of the hair follicle in just a few weeks. The process begins at the follicle base and works its way upwards towards the HFSC niche. The result is a mass of dying and dead cells that need removal to prevent the resulting decay from triggering inflammatory or autoimmune responses.

Normally, this would be the job of phagocytes like macrophages, but few are found in the hair follicle, meaning they must fall to local epithelial cells to keep things tidy.

 Elaine Fuchs, Stem cells tightly regulate dead cell clearance to maintain tissue fitness, Nature (2024). DOI: 10.1038/s41586-024-07855-6www.nature.com/articles/s41586-024-07855-6

Part 2

**

Comment by Dr. Krishna Kumari Challa on August 22, 2024 at 9:49am

Mechanism for removing dead cells identified

Billions of our cells die every day to make way for the growth of new ones. Most of these goners are cleaned up by phagocytes—mobile immune cells that migrate where needed to engulf problematic substances. But some dying or dead cells are consumed by their own neighbors, natural tissue cells with other primary jobs. How these cells sense the dying or dead around them has been largely unknown till now.

Now researchers from The Rockefeller University have shown how a sensor system operates in hair follicles, which have a well-known cycle of birth, decay, and regeneration put into motion by hair follicle stem cells (HFSCs). In a new study published in Nature, they demonstrate that a duo of sensors works in tandem to pick up signals from both dying and living HFSCs, removing debris before tissue damage can occur and ceasing operation before healthy cells are consumed.

The system is seemingly spatially tuned to the presence of corpses, and it only functions when each receptor picks up the signal is attuned to. If one of them disappears, the mechanism stops operating. It's a really beautiful way to keep the area clean without consuming healthy cells.

By diverting their attention towards eating their dying neighbors, HFSCs keep inflammation-generating immune cells away. They also likely benefit from these extra calories, but as soon as the debris is cleared, they must quickly return to their jobs of maintaining the stem cell pool and making the body's hair.

Part 1

Comment by Dr. Krishna Kumari Challa on August 22, 2024 at 9:44am

Study finds 'DNA scavengers' can stop some antibiotic resistance from spreading

For nearly a century, scientists have waged war on antibiotic-resistant microbes. Researchers now found a new way to prevent it—by unleashing "DNA scavengers" in wastewater treatment plants.

They found an enzyme that breaks up strands of antibiotic-resistant DNA floating in wastewater before bacteria can pick them up and take on their antibiotic-resistant properties. 

This could be a powerful, environmentally friendly tool to control the spread of antibiotic resistance in wastewater and help keep antibiotics effective.

But as with any new discovery, there is more work to be done to optimize the technology.

Yang Li et al, Engineered DNA scavenger for mitigating antibiotic resistance proliferation in wastewater treatment, Nature Water (2024). DOI: 10.1038/s44221-024-00289-4

Comment by Dr. Krishna Kumari Challa on August 22, 2024 at 9:36am

The research that was done on a mouse model showed that Salmonellae detect electric signals in FAE. They move toward this part of the gut where they find openings through which they can enter. This process of cell movement in response to electric fields is called galvanotaxis, or electrotaxis.

This study found that this 'entry point' has electric fields that the Salmonella bacteria take advantage of to pass.

The study also showed that E. coli and Salmonella respond differently to bioelectric fields. They have opposite responses to the same electric cue. While E. coli clustered next to the villi, Salmonella gathered to FAE.

The study detected electric currents that loop by entering the absorptive villi and exiting the FAE.

Notably, the bioelectric field in the gut epithelia is configured in a way that Salmonellae take advantage of to be sorted to the FAE and less so for E. coli. The pathogen seems to prefer the FAE as a gateway to invade the host and cause infections.

Previous studies have indicated that bacteria use chemotaxis to move around. With chemotaxis, the bacteria sense chemical gradients and move towards or away from specific compounds. But the new study suggests that the galvanotaxis of Salmonella to the FAE does not occur through chemotaxis pathways.

The study might have the potential to explain complex chronic diseases, such as inflammatory bowel disease (IBD).

This mechanism represents a new pathogen-human body 'arms race' with potential implications for other bacterial infections as well as prevention and treatment possibilities. It is thought that the root cause of IBD is an excessive and abnormal immune response against good bacteria. It will be interesting to learn whether patients prone to have IBD also have aberrant bioelectric activities in gut epithelia.

Yao-Hui Sun et al, Gut epithelial electrical cues drive differential localization of enterobacteria, Nature Microbiology (2024). DOI: 10.1038/s41564-024-01778-8

Part 2

Comment by Dr. Krishna Kumari Challa on August 22, 2024 at 9:32am

Study discovers an electric current in the gut that attracts pathogens like Salmonella
How do bad bacteria find entry points in the body to cause infection? This question is fundamental for infectious disease experts and people who study bacteria. Harmful pathogens, like Salmonella, find their way through a complex gut system where they are vastly outnumbered by good microbes and immune cells. Still, the pathogens navigate to find vulnerable entry points in the gut that would allow them to invade and infect the body.

A team of researchers has discovered a novel bioelectrical mechanism these pathogens use to find these openings. Their study was published  in Nature Microbiology.

Salmonella cause  several illnesses and  deaths in the world every year. To infect someone, this pathogen needs to cross the gut lining border.

When ingested, Salmonella find their way to the intestines. There, they are vastly outnumbered by over 100 trillion good bacteria (known as commensals). They are facing the odds of one in a million. But still they can infect people. 

The intestine has a very complex landscape. Its epithelial structure includes villus epithelium and follicle-associated epithelium (FAE). Villus epithelium is made of absorptive cells (enterocytes) with protrusions that help with nutrient absorption.

FAE, on the other hand, contains M cells overlying small clusters of lymphatic tissue known as Peyer's patches. These M cells are tasked with antigen sampling. They act as the immune system's first line of defense against microbial and dietary antigens.

Part 1

Comment by Dr. Krishna Kumari Challa on August 22, 2024 at 9:23am

Human-wildlife overlap expected to increase across more than half of land on Earth by 2070

As the human population grows, more than half of Earth's land will experience an increasing overlap between humans and animals by 2070, according to a new study by scientists.

Greater human-wildlife overlap could lead to more conflict between people and animals, say the researchers. But understanding where the overlap is likely to occur—and which animals are likely to interact with humans in specific areas—will be crucial information for urban planners, conservationists and countries that have pledged international conservation commitments. Their findings are published in Science Advances.

They found that the overlap between populations of humans and wildlife will increase across about 57% of the global lands, but it will decrease across only about 12% of the global lands. They  also found that agricultural and forest areas will experience substantial increases of overlap in the future.

The study showed that the human-wildlife overlap will be driven by human population growth rather than climate change. That is, the increase in people settling in previously undeveloped areas will drive the overlap rather than climate change, causing animals to shift where they live.

In many places around the world, more people will interact with wildlife in the coming decades and often those wildlife communities will comprise different kinds of animals than the ones that live there now.

This means that all sorts of novel interactions, good and bad, between people and wildlife will emerge in the near future.

Deqiang Ma et al, Global Expansion of Human-Wildlife Overlap in the 21st Century, Science Advances (2024). DOI: 10.1126/sciadv.adp7706www.science.org/doi/10.1126/sciadv.adp7706

Comment by Dr. Krishna Kumari Challa on August 22, 2024 at 9:18am

Bacteria make thermally stable plastics similar to polystyrene and PET for the first time

Bioengineers around the world have been working to create plastic-producing microbes that could replace the petroleum-based plastics industry. Now, researchers  have overcome a major hurdle: getting bacteria to produce polymers that contain ring-like structures, which make the plastics more rigid and thermally stable.

Because these molecules are usually toxic to microorganisms, the researchers had to construct a novel metabolic pathway that would enable the E. coli bacteria to both produce and tolerate the accumulation of the polymer and the building blocks it is composed of.

The resulting polymer is biodegradable and has physical properties that could lend it to biomedical applications such as drug delivery, though more research is needed. The results are presented August 21 in Trends in Biotechnology.

Microbial Production of an Aromatic Homo-Polyester, Trends in Biotechnology (2024). DOI: 10.1016/j.tibtech.2024.06.001

Comment by Dr. Krishna Kumari Challa on August 22, 2024 at 9:13am

Self-repairing mitochondria use novel recycling system, study finds

Mitochondria depend on a newly discovered recycling mechanism identified by scientists.

Mitochondria are tiny structures inside of cells that carry out a wide range of critical functions, including generating energy to help keep cells healthy. Every mitochondrion has two layers of membranes: the outer membrane and the inner membrane. On the inner membrane, folds called cristae contain proteins and molecules needed for energy production. When cristae are damaged, there can be a negative impact on an entire cell.

This new research work  shows, for the first time, that mitochondria are able to recycle a localized injury, removing damaged cristae, and then function normally afterward.

In addition to being essential to keeping mitochondria healthy, the research team thinks this mechanism could present a future target for the diagnosis and treatment of conditions characterized by mitochondrial dysfunction, including infection, fatty liver disease, aging, neurodegenerative conditions and cancer.

In cells, structures called lysosomes act as recycling centers that can digest different kinds of molecular material. With state-of-the art microscopes the researchers  identified that a mitochondria's damaged crista can squeeze through its outer membrane to have a lysosome directly engulf it and break it down successfully.

The researchers named the novel process VDIM formation, which stands for vesicles derived from the inner mitochondrial membrane. By removing damaged cristae through VDIMs, cells can prevent harm from spreading to the rest of the mitochondria and the whole cell.

Forming a VDIM involved several steps and molecules.

First, a damaged crista releases a signal that activates a channel on the nearby lysosome to allow calcium to flow out of the lysosome.

Calcium then activates another channel on the outer membrane of the mitochondria to form a pore and allow damaged cristae to squeeze out of the mitochondria into the lysosome, which digests the damaged material—something that has never been seen before. By recycling just the damaged crista, mitochondria can continue its regular function.

Understanding this process gives us insight into how mitochondria stay healthy, which is important to everyone's overall health and longevity.

Nicola Jones et al, Lysosomes drive the piecemeal removal of mitochondrial inner membrane, Nature (2024). DOI: 10.1038/s41586-024-07835-wwww.nature.com/articles/s41586-024-07835-w

 

Members (22)

 
 
 

Badge

Loading…

© 2025   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service