SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 9 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

Study reveals brain-cell circuitry that could underlie how animals see wavelengths of light

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 11 hours ago. 1 Reply

Perceiving something—anything—in your surroundings is to become aware of what your senses are detecting. Now, neuroscientists have identified, for the first time, brain-cell circuitry in fruit flies…Continue

Antidote for antidote side effects? Don't enter this vicious cycle!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply

Q: Is there any company trying to make antidote to get rid of corona vaccine side effects?Krishna: Till date, no.However, let me explain to you why we can manage vaccine side effects in majority of…Continue

You can trust Genuine Science with confidence!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply

Q: Is it scientific to try and alter the result of an experiment to better meet your belief of what the result should be?Krishna: NO!Genuine Scientists never do such things. Because they think that…Continue

Ultrasound Mimicry used as a weapon to fight off bat attacks by tiger beetles

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply

Bats, as the main predator of night-flying insects, create a selective pressure that has led many of their prey to evolve an early warning system of sorts: ears uniquely tuned to high-frequency bat…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on March 1, 2023 at 10:45am

'Dead zone' within tumor promotes cancer spread, helped by a protein secreted by cancer cells

A tumor's necrotic core contains factors that appear to promote metastasis, or the seeding of tumors cells throughout the body, according to a new study in rats by researchers. 

Tumor necrotic cores are a fairly common phenomenon, but they haven't been linked to cancer metastasis until recently. This research put together observations other people have made into the specific context of breast cancer metastasis. It shows a link between necrosis, circulating tumour cells and cancer metastasis.

Necrotic cores are tumors that are dying from the inside out, and they make for a perfect environment for cancer to spread.

Dead zones of tumors have leaky blood vessels, hypoxia or low levels of oxygen and the recruitment of immune cells, some of which have been shown to help cancer cells spread. What the researchers think is happening is that the necrotic core is mostly a dead zone, but it also has some surviving tumour cells that help the cancer disseminate in the body.

Surgeons, pathologists, radiologists, clinicians and researchers often come across necrotic cores in their line of work and they're usually not a good sign.

Necrosis is a clinical finding seen in aggressive tumors that grow quickly. 

When doctors see it in a patient's biopsy, it means this is a dangerous tumor that needs to be treated aggressively. But necrosis isn't only something seen in large, late-stage tumours. It can happen in early-stage and small tumours too.

Part1

**

Comment by Dr. Krishna Kumari Challa on March 1, 2023 at 10:21am

Your pets leaking information about you? Yes, considering this:

Pet and animal-related apps are creating cybersecurity risks to their owners, new research has shown.

While being able to trace your cat and dog may be an attractive benefit to many pet owners as it can provide peace of mind, allowing a third party to track your movements may be much less attractive.

Computer scientists 

have exposed multiple security and privacy issues by evaluating 40 popular Android apps for pets and other companion animals as well as farm animals. The results show that several of these apps are putting their users at risk by exposing their login or location details. Password vulnerability was one of the areas exposed by the team. They identified three applications that had the user's login details visible in plain text within non-secure HTTP traffic. This means that anyone is able to observe the internet traffic of someone using one of these apps and will be able to find out their login information. In addition to login information, two of the apps also showed user details, such as their location, that may enable someone to gain access to their devices and risk a cyber-attack. Another area of concern identified in the study was the use of trackers. All but four of the applications were found to feature some form of tracking software. A tracker gathers information on the person using the application, on how they use it, or on the smartphone being used. The scientists also warn that the apps perform very poorly in terms of notifying the user of their privacy policy. Their analysis shows that 21 of the apps are tracking the user in some way before the user even has a chance to consent to this, violating current data protection regulations.

Scott Harper et al, Security and Privacy Concerns of Pet Tech Users, Proceedings of the 12th International Conference on the Internet of Things (2023). DOI: 10.1145/3567445.3571102

Scot Harper et al, Are Our Animals Leaking Information About Us? Security and Privacy Evaluation of Animal-related Apps, IEEE European Symposium on Security and Privacy Workshops (EuroS&PW) (2022). DOI: 10.1109/EuroSPW55150.2022.00012

Comment by Dr. Krishna Kumari Challa on February 28, 2023 at 11:29am

Researchers discover the mechanism by which tumor cells become resistant to chemotherapy in colorectal cancer

 Platinum-based chemotherapy, which is used to treat advanced colorectal cancer, accumulates in the healthy cells surrounding the cancer cells and, as a result, can reduce tumor sensitivity to treatment. This is demonstrated by a study published in the journal Nature Communications.

 A large number of cancer patients are treated with platinum-based therapy. However, many tumors are capable of developing resistance to treatment. In this study, the researchers examined tumor samples from patients and pre-clinical models of colorectal cancer to better understand the resistance to platinum-based therapy. They observed that platinum accumulates prominently in the healthy cells that surround the cancer cells, particularly in fibroblasts, the cells that contribute to tissue formation. Furthermore, this accumulation persists for more than two years after treatment has been completed. This discovery was made using techniques developed in geology and applied to biological samples.

The effect of platinum on fibroblasts
The researchers were able to demonstrate how the accumulation of platinum in the fibroblasts induced the activation of certain genes associated with a poor response to chemotherapy and tumor progression. Among them, the TGF-β protein redirected these fibroblasts to support cancer cells aggressiveness and resistance to treatment. 

There are currently no predictive biomarkers of benefit from chemotherapy in colorectal cancer. The analysis of about thirty patients before and after chemotherapy presented in this study reveals that periostin levels are an indicator of TGF-β activity in fibroblasts and serve as a robust marker of response to chemotherapy. Indeed, treatment benefit was significantly reduced in patients with elevated periostin levels before and/or after chemotherapy. Accordingly, chemotherapy was found to be less effective in tumors with high levels of periostin in pre-clinical colorectal cancer models.

The researchers are now working on developing a novel approach to improve the efficacy of chemotherapy in colorectal cancer.

This study is an important step toward understanding why chemotherapy does not work the same way in all cancer patients, and how to prevent or reverse resistance. This work is also essential in demonstrating that cancer treatment must take into account not only the cancer cells but also the healthy cells in the tumor. The next critical step will be to develop pharmacological strategies that act on the cancer cell and modulate the microenvironment in favor of tumor elimination.

 Jenniffer Linares et al, Long-term platinum-based drug accumulation in cancer-associated fibroblasts promotes colorectal cancer progression and resistance to therapy, Nature Communications (2023). DOI: 10.1038/s41467-023-36334-1

Comment by Dr. Krishna Kumari Challa on February 28, 2023 at 8:54am

Tiny environmental plastic particles in mom's food reach unborn children

Nanoscale plastic particles like those that permeate most food and water pass from pregnant rats to their unborn children and may impair fetal development, according to a  study that suggests the same process happens in humans.

Erosion chips microscopic particles off the billions of tons of plastics that are exposed to the elements in the environment. These particles mix with the food we eat and the air we breathe. A typical person ingests a credit card's worth of them every week.

Previous studies in pregnant laboratory animals have found adding these plastics to food impairs their offspring in numerous ways, but those studies didn't determine whether mothers passed the plastics to their children in utero.

The study provided specially marked nanoscale plastics to five pregnant rats. Subsequent imaging found that these nanoplastic particles permeated not only their placentas but also the livers, kidneys, hearts, lungs and brains of their offspring.

These findings demonstrate that ingested nanoscale polystyrene plastics can breach the intestinal barrier of pregnant mammals, the maternal-fetal barrier of the placenta and all fetal tissues. Future studies will investigate how different types of plastics cross cell barriers, how plastic particle size affects the process and how plastics harm fetal  development, the researchers said.

 Chelsea M. Cary et al, Ingested Polystyrene Nanospheres Translocate to Placenta and Fetal Tissues in Pregnant Rats: Potential Health Implications, Nanomaterials (2023). DOI: 10.3390/nano13040720

Comment by Dr. Krishna Kumari Challa on February 28, 2023 at 8:48am

Study finds common artificial sweetener linked to higher rates of heart attack and stroke

New research showed that erythritol, a popular artificial sweetener, is associated with an increased risk of heart attack and stroke. Findings were published today in Nature Medicine.

Researchers studied more than 4,000 people in the U.S. and Europe and found those with higher blood erythritol levels were at elevated risk of experiencing a major adverse cardiac event such as heart attack, stroke or death. They also examined the effects of adding erythritol to either whole blood or isolated platelets, which are cell fragments that clump together to stop bleeding and contribute to blood clots. Results revealed that erythritol made platelets easier to activate and form a clot. Pre-clinical studies confirmed ingestion of erythritol heightened clot formation.

Artificial sweeteners, such as erythritol, are common replacements for table sugar in low-calorie, low-carbohydrate and "keto" products. Sugar-free products containing erythritol are often recommended for people who have obesity, diabetes or metabolic syndrome and are looking for options to help manage their sugar or calorie intake. People with these conditions also are at higher risk for adverse cardiovascular events like heart attack and stroke.

Erythritol is about 70% as sweet as sugar and is produced through fermenting corn. After ingestion, erythritol is poorly metabolized by the body. Instead, it goes into the bloodstream and leaves the body mainly through urine. The human body creates low amounts of erythritol naturally, so any additional consumption can accumulate.

Measuring artificial sweeteners is difficult and labeling requirements are minimal and often do not list individual compounds. Erythritol is "Generally Recognized As Safe (GRAS)" by the FDA, which means there is no requirement for long-term safety studies.

The authors note the importance of follow-up studies to confirm their findings in the general population. The study had several limitations, including that clinical observation studies demonstrate association and not causation.

This study shows that when participants consumed an artificially sweetened beverage with an amount of erythritol found in many processed foods, markedly elevated levels in the blood are observed for days—levels well above those observed to enhance clotting risks. It is important that further safety studies are conducted to examine the long-term effects of artificial sweeteners in general, and erythritol specifically, on risks for heart attack and stroke, particularly in people at higher risk for cardiovascular disease.

 Stanley Hazen, The artificial sweetener erythritol and cardiovascular event risk, Nature Medicine (2023). DOI: 10.1038/s41591-023-02223-9www.nature.com/articles/s41591-023-02223-9

Comment by Dr. Krishna Kumari Challa on February 28, 2023 at 8:41am

Tissue engineering: Developing bioinspired multi-functional tendon-mimetic hydrogels

Materials scientists work to develop advanced biological materials for medical devices and tissue engineering platforms to emulate natural biological tissue architectures via materials engineering. However, the natural tissue architecture has a variety of characteristics that are difficult to synthetically replicate. The architecture of tendons relies on the load-bearing capacities of the musculoskeletal system to provide biophysical cues that translate into cellular behaviors via interfacial interactions. In the past decade, researchers had devoted extensive research efforts to engineer tendon-mimetic materials with high structural anisotropy.

In a new report now published in Science Advances,  a research team in physics, mechanical engineering, electrical and electronic engineering reported the development of multifunctional tendon-mimetic hydrogels by assembling aramid nanofiber composites. 

The anisotropic composite hydrogels (ACH) contained stiff nanofibers and soft polyvinyl alcohol moieties to mimic biological interactions that typically occur between collagen fibers and proteoglycans  in tendons. The team was bioinspired by natural tendons to develop hydrogels with a high elastic modulus, strength and fracture toughness.

The researchers biofunctionalized these material surfaces with bioactive molecules to present biophysical cues to impart behavioral similarities to those of cell attachment. Additionally, the soft bioelectronic components integrated on the hydrogels facilitated a variety of physiological benefits. Based on the outstanding functionality of the tendon-mimetics, the team envisioned broader applications of the materials in advanced tissue engineering to form implantable prosthetics for human-machine interactions.

Mingze Sun et al, Multifunctional tendon-mimetic hydrogels, Science Advances (2023). DOI: 10.1126/sciadv.ade6973

Jeong-Yun Sun et al, Highly stretchable and tough hydrogels, Nature (2012). DOI: 10.1038/nature11409

Comment by Dr. Krishna Kumari Challa on February 26, 2023 at 10:13am

Even to this day, however, it's still unclear how so many animals achieve these incredible feats of navigation.

In the 1970s, scientists suggested that this magnetic-compass sense could involve radical pairs, molecules with unpaired outer shell electrons that form a pair of entangled electrons whose spins are altered by the Earth's magnetic field.

Twenty-two years later, that study's lead author co-authored a new paper proposing a specific molecule in which the radical pairs could be formed.

This molecule – a receptor in the retina of migrating birds called a cryptochrome – can sense light and magnetism, and it seems to work through quantum entanglement.

In basic terms, when a cryptochrome absorbs light, the energy triggers one of its electrons, pushing it to occupy one of two spinning states, each of which is differently influenced by Earth's geomagnetic field.

Cryptochromes have been a leading explanation for how animals sense magnetic fields for two decades, but now researchers at the Universities of Manchester and Leicester have identified another candidate.

Manipulating the genes of fruit flies, the team found that a molecule called Flavin Adenine Dinucleotide (FAD), which usually forms a radical pair with cryptochromes, is actually a magnetoreceptor in and of itself.

This basic molecule is found at differing levels in all cells, and the higher the concentration, the more likely it is to impart magnetic sensitivity, even when cryptochromes are lacking.

In fruit flies, for instance, when FAD is stimulated by light, it generates a radical pair of electrons that are responsive to magnetic fields.

However, when cryptochromes are present alongside FADs, a cell's sensitivity to magnetic fields increases. The findings suggest that cryptochromes are not as essential as we thought for magnetoreception.

That shows cells can, at least in a laboratory, sense magnetic fields through other ways."

The discovery could help explain why human cells show sensitivity to magnetic fields in the lab. The form of cryptochrome present in the cells of our species' retina has proved capable of magnetoreception at a molecular level when expressed in fruit flies.

However, this doesn't mean humans utilize that function, nor is there evidence that cryptochrome guides our cells to line up along magnetic fields in the lab.

Even though human cells show sensitivity to Earth's magnetic field, we don't have a conscious sense of that force. Maybe that's because we don't have any cryptochromes assisting.

This study may ultimately allow us to better appreciate the effects that magnetic field exposure might potentially have on humans.

https://www.nature.com/articles/s41586-023-05735-z

Part 2

**

Comment by Dr. Krishna Kumari Challa on February 26, 2023 at 10:10am

All Living Cells Could Have The Molecular Machinery For a 'Sixth Sense'

Every animal on Earth may house the molecular machinery to sense magnetic fields, even those organisms that don't navigate or migrate using this mysterious 'sixth sense'.

Scientists working on fruit flies have now identified a ubiquitous molecule in all living cells that can respond to magnetic sensitivity if it is present in high enough amounts or if other molecules assist it.

The new findings suggest that magnetoreception could be much more common in the animal kingdom than we ever knew. If researchers are right, it might be an astonishingly ancient trait shared by virtually all living things, albeit with differing strengths.

That doesn't mean all animals or plants can actively sense and follow magnetic fields, but it does suggest that all living cells might, including ours.

How we sense the external world, from vision, hearing through to touch, taste, and smell, are well understood.

But by contrast, which animals can sense and how they respond to a magnetic field remains unknown. This study has made significant advances in understanding how animals sense and respond to external magnetic fields - a very active and disputed field.

Magnetoreception might sound like magic to us, but plenty of fish, amphibians, reptiles, birds, and other mammals in the wild can sense the tug of Earth's magnetic field and use it to navigate space.

Because this force is essentially invisible to our species, it took a remarkably long time for scientists to notice it.

Only in the 1960s did scientists show that bacteria can sense magnetic fields and orient themselves in relation to those fields; in the 1970s, we found that some birds and fish follow Earth's magnetic field when migrating.

Part 1

Comment by Dr. Krishna Kumari Challa on February 26, 2023 at 8:18am

Combining forces to advance ocean science

Comment by Dr. Krishna Kumari Challa on February 25, 2023 at 12:59pm

How scientists hauling logs on their heads may have solved a Chaco Canyon mystery!

Why did researchers carry a log weighing more than 130 pounds for 15 miles? Their feat of endurance could reveal new information about how ancient peoples hauled more than 200,000 heavy timbers to a site in the modern-day Southwest called Chaco Canyon.

In a new study, several researchers reenacted a small part of a trek that people in the Southwest United States may have made more than 1,000 years ago.

They described their experiment Feb. 22 in the Journal of Archaeological Science: Reports.

This is also done by sherpas in Nepal.

The researchers  they were hoping to solve an archaeological mystery that has perplexed researchers for decades: How did ancient peoples transport more than 200,000 heavy construction timbers over 60 miles to a famous site in the Southwest called Chaco Canyon?

The team's findings show that the key to this testament to human labor may have been simple devices called tumplines. These straps, which sherpas, or native mountain peoples of Nepal, still widely use today, loop over the top of the head. They help porters to support weight using the bones of their neck and spine rather than their muscles. Archaeological evidence suggests that ancient peoples in the Southwest employed tumplines woven from yucca plants to transport everyday items like food and water.

Tumplines allow one to carry heavier weights over larger distances without getting fatigued.

Chaco Canyon sits near the border between New Mexico and Colorado. Thousands of people, the ancestors of today's Diné, or Navajo, and Pueblo peoples, may have lived there from around A.D. 850 to 1200. They built "Great Houses," which were as much as four stories tall and contained hundreds of rooms.

But how this society got its construction supplies has been a long-standing mystery. Human porters would have needed to carry 16-foot-long wooden beams to Chaco Canyon by foot—following a network of ancient roads to sites like the Chuska Mountains to the west.

The team's findings open up a new understanding of the day-to-day lives of the people who shaped the Southwest more than a thousand years ago.

the team's results show that supplying Chaco Canyon with goods may not have been as back-breaking an undertaking as archaeologists once assumed.

As these guys showed, you don't have to be super trained to carry a log.

ames A. Wilson et al, Were timbers transported to Chaco using tumplines? A feasibility study, Journal of Archaeological Science: Reports (2023). DOI: 10.1016/j.jasrep.2023.103876

 

Members (22)

 
 
 

Badge

Loading…

© 2024   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service