SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: yesterday

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

Why antibiotic resistance is increasing and how our friendly ubiquitous scientists are trying to tackle it

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 4 Replies

Why is antibiotic resistance increasing? It is the result of evolution!And why should bacteria evolve? In order to survive! Because antibiotics are their 'poison'.If they can't surmount this problem…Continue

Is human body a super-organism?!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply

Q: Is the human race a superorganism?Krishna: Not entire human race. The human body? To some extent!Recently somebody told me they feel lonely. This was my reply to them:Do you think you are alone?…Continue

Why Generic drugs are important

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 2 Replies

A generic drug  (or generics in plural) is a drug defined as "a drug product that is comparable to a brand/reference listed drug product in dosage form, strength, quality and performance…Continue

Different routes of drug administration

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply

Q: What are the different routes of drug administration, and how do they affect drug bioavailability? A medication administration route is often classified by the location at which the drug is…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on June 3, 2022 at 12:38pm

Move Over Apoptosis: Another Form of Cell Death May Occur in the Gut

Though scientists don’t yet know much about it, a newly described process called erebosis might have profound implications for how the gut maintains itself.

Every day, billions of our cells die and new, healthy ones take their place. In a healthy gut lining, as in most tissues, a type of cell death called apoptosis is thought to mediate this process almost entirely on its own. But researchers from RIKEN in Kobe, Japan, suspect they have discovered a new kind of cell death in the gut of a fruit fly. The new process, which they call erebosis or “deep darkness,” may be present in other tissues, the team reports April 25 in PLOS Biology and if found in humans, it could affect how we understand diseases of the gastrointestinal tract. 

https://www.the-scientist.com/news-opinion/move-over-apoptosis-anot...

Part 1

Comment by Dr. Krishna Kumari Challa on June 3, 2022 at 12:26pm

Scientists May Have Found a Way to Inject Oxygen Into The Bloodstream Intravenously

There are many illnesses and injuries, including COVID-19, where the body struggles to get the amount of oxygen into the lungs necessary for survival.

In severe cases, patients are put on a ventilator, but these machines are often scarce and can cause problems of their own, including infection and injury to the lungs.

Scientists may have now found a breakthrough, and it's one that that could significantly impact how ventilators are used. 

In addition to traditional mechanical ventilation, there's another technique called Extracorporeal Membrane Oxygenation (ECMO), where blood is carried outside the body so that oxygen can be added and carbon dioxide can be removed.

Thanks to a new discovery, oxygen may now be able to be added directly, and the patient's blood can stay where it is. With a condition like refractory hypoxemia, which can be brought on by being on a ventilator, having this approach available could save lives.

If successful, the described technology may help to avoid or decrease the incidence of ventilator-related lung injury from refractory hypoxemia.

The new technique works by channeling an oxygen-laden liquid through a series of nozzles that get smaller and smaller. By the time the process is finished, the bubbles are smaller than red blood cells – and that means they can be directly injected into the bloodstream without blocking blood vessels.

A lipid membrane is used to coat the bubbles before they're added to the blood, which prevents toxicity and stops the bubbles from clumping together. After the solution is injected, the membrane dissolves and the oxygen is released.

In experiments on donated human blood, blood oxygen saturation levels could be lifted from 15 percent to over 95 percent within just a few minutes. In live rats, the process was shown to increase saturation from 20 percent to 50 percent.

"Importantly, these devices allow us to control the dosage of oxygen delivered and the volume of fluid administered, both of which are critical parameters in the management of critically ill patients.

https://www.pnas.org/doi/full/10.1073/pnas.2115276119

Comment by Dr. Krishna Kumari Challa on June 3, 2022 at 12:09pm

Researchers develop nanoparticles that cross the blood-brain barrier

There are currently few good treatment options for glioblastoma, an aggressive type of brain cancer with a high fatality rate. One reason that the disease is so difficult to treat is that most chemotherapy drugs can't penetrate the blood vessels that surround the brain.

A team of  researchers is now developing drug-carrying nanoparticles that appear to get into the brain more efficiently than drugs given on their own. Using a human tissue model they designed, which accurately replicates the blood-brain barrier, the researchers showed that the particles could get into tumors and kill .

The researchers grew patient-derived glioblastoma cells in a microfluidic device. Then, they used human endothelial cells to grow blood vessels in tiny tubes surrounding the sphere of tumor cells. The model also includes pericytes and astrocytes, two cell types that are involved in transporting molecules across the blood-brain barrier.

Joelle P. Straehla et al, A predictive microfluidic model of human glioblastoma to assess trafficking of blood–brain barrier-penetrant nanoparticles, Proceedings of the National Academy of Sciences (2022). DOI: 10.1073/pnas.2118697119

Cynthia Hajal et al, Engineered human blood–brain barrier microfluidic model for vascular permeability analyses, Nature Protocols (2022). DOI: 10.1038/s41596-021-00635-w

Comment by Dr. Krishna Kumari Challa on June 3, 2022 at 11:15am

Time crystals 'impossible' but obey quantum physics

Time crystals: First theorized in 2012 by Nobel Laureate Frank Wilczek and identified in 2016, time crystals exhibit the bizarre property of being in constant, repeating motion in time despite no external input. Their atoms are constantly oscillating, spinning, or moving first in one direction, and then the other.

Time crystals are different from a standard crystal—like metals or rocks—which is composed of atoms arranged in a regularly repeating pattern in space.

Scientists have created the first "time-crystal" two-body system in an experiment that seems to bend the laws of physics. It comes after the same team recently witnessed the first interaction of the new phase of matter.

Time crystals were long believed to be impossible because they are made from atoms  in never-ending motion. The discovery, published in Nature Communications, shows that not only can time crystals be created, but they have potential to be turned into useful devices.

Everybody knows that perpetual motion  machines are impossible. However, in quantum physics perpetual motion is okay as long as we keep our eyes closed. By sneaking through this crack we can make time crystals. It turns out putting two of them together works beautifully, even if time crystals should not exist in the first place. And we already know they also exist at room temperature.

A "two-level system" is a basic building block of a quantum computer. Time crystals could be used to build quantum devices that work at room temperature. 

An international team of researchers observed time crystals by using Helium-3 which is a rare isotope of helium with one missing neutron. The experiment was carried out in Aalto University.

They cooled superfluid helium-3 to about one ten thousandth of a degree from absolute zero (0.0001 K or -273.15 C). The researchers created two time crystals inside the superfluid, and brought them to touch. The scientists then watched the two time crystals interacting as described by quantum physics.

Nonlinear two-level dynamics of quantum time crystals, Nature Communications (2022). DOI: 10.1038/s41467-022-30783-w

Comment by Dr. Krishna Kumari Challa on June 2, 2022 at 6:48am

The brain’s immunological wonderland

Researchers once thought that the brain was walled off from the rest of the body’s immune system, but an exciting picture is emerging of the brain as a unique immunologi.... The brain’s border control actually does allow immune cells from the body into the fluid-filled membranes that surround the organ, which are an “immunological wonderland”, says neuroimmunologist Kiavash Movahedi. Special immune cells produced in the skull’s bone marrow could be gentler than normal immune cells. Researchers are exploring how these and other kinds of immune cells in the brain play a role in fighting diseases and could be harnessed in treatments.

Comment by Dr. Krishna Kumari Challa on June 2, 2022 at 6:30am

Capturing carbon with crops, trees and bioenergy

An integrated approach to land management practices in the U.S. can reduce carbon dioxide in the atmosphere far more than earlier estimates based on separate approaches, Michigan State University researchers say. Their research was published May 31 in the journal Global Change Biology.

--

Automated drones could scare birds off agricultural fields

In the future, cameras could spot blackbirds feeding on grapes in a vineyard and launch drones to drive off the avian irritants, then return to watch for the next invading flock. All without a human nearby.

--

Physicists demonstrate novel mechanism that can prevent light waves...

In collaboration with the group of Professor Mordechai Segev (Technion, Israel Institute of Technology), physicists from the group of Professor Alexander Szameit (University of Rostock) have demonstrated a novel type of mechanism that can prevent light waves from spreading freely. So far, the underlying physical effect had been considered far too weak to fully arrest wave expansion. In their recent experiments, the physicists observed that such light localization is nevertheless possible, demonstrating the uncanny sensitivity of wave propagation across a wide range of spatial length scales. Their discovery was recently published in the journal Science Advances.

--

Less air pollution leads to higher crop yields, study shows

Usually, increasing agricultural productivity depends on adding something, such as fertilizer or water. A new Stanford University-led study reveals that removing one thing in particular—a common air pollutant—could lead to dramatic gains in crop yields. The analysis, published June 1 in Science Advances, uses satellite images to reveal for the first time how nitrogen oxides—gases found in car exhaust and industrial emissions—affect crop productivity. Its findings have important implications for increasing agricultural output and analyzing climate change mitigation costs and benefits around the world.

Comment by Dr. Krishna Kumari Challa on June 2, 2022 at 6:20am

Comment by Dr. Krishna Kumari Challa on June 2, 2022 at 6:15am

How electric fish were able to evolve electric organs

Electric organs help electric fish, such as the electric eel, do all sorts of amazing things: They send and receive signals that are akin to bird songs, helping them to recognize other electric fish by species, sex and even individual. A new study in Science Advances explains how small genetic changes enabled electric fish to evolve electric organs. The finding might also help scientists pinpoint the genetic mutations behind some human diseases.

Evolution took advantage of a quirk of  genetics to develop electric organs. All fish have duplicate versions of the same gene that produces tiny muscle motors, called sodium channels. To evolve electric organs, electric fish turned off one duplicate of the sodium channel gene in muscles and turned it on in other cells. The tiny motors that typically make muscles contract were repurposed to generate electric signals, and voila! A new organ with some astonishing capabilities was born.

In the new paper, researchers  describe discovering a short section of this sodium channel gene—about 20 letters long—that controls whether the gene is expressed in any given cell. They confirmed that in electric fish, this control region is either altered or entirely missing. And that's why one of the two sodium channel genes is turned off in the muscles of electric fish. But the implications go far beyond the evolution of electric fish.

This control region is in most vertebrates, including humans. So, the next step in terms of human health would be to examine this region in databases of human genes to see how much variation there is in normal people and whether some deletions or mutations in this region could lead to a lowered expression of sodium channels, which might result in disease. 

Sarah LaPotin et al, Divergent cis-regulatory evolution underlies the convergent loss of sodium channel expression in electric fish, Science Advances (2022). DOI: 10.1126/sciadv.abm2970www.science.org/doi/10.1126/sciadv.abm2970

Comment by Dr. Krishna Kumari Challa on June 2, 2022 at 6:09am

Bacteria-killing nano-drills : Visible light triggers molecular machines to treat infections

Molecular machines that kill infectious bacteria have been taught to see their mission in a new light.

The latest iteration of nanoscale drills developed by researchers are activated by visible light rather than ultraviolet (UV), as in earlier versions. These have also proven effective at killing bacteria through tests on real infections.

Six variants of molecular machines were successfully tested by  chemists. All of them punched holes in the membranes of gram-negative and gram positive bacteria in as little as two minutes. Resistance was futile for bacteria that have no natural defenses against mechanical invaders. That means they are unlikely to develop resistance, potentially offering a strategy to defeat bacteria that have become immune to standard antibacterial treatments over time.

The new version gets its energy from still-blueish light at 405 nanometers, spinning the molecules' rotors at 2 to 3 million times per second.

It's been suggested by other researchers that light at that wavelength has mild antibacterial properties of its own, but the addition of molecular machines supercharges it. Bacterial infections like those suffered by burn victims and people with gangrene will be early targets.

The researchers also found the machines effectively break up biofilms and persister cells, which become dormant to avoid antibacterial drugs.

The new machines also promise to revive antibacterial drugs considered ineffective. Drilling through the microorganisms' membranes allows otherwise ineffective drugs to enter cells and overcome the bug's intrinsic or acquired resistance to antibiotics. 

Ana L. Santos et al, Light-activated molecular machines are fast-acting broad-spectrum antibacterials that target the membrane, Science Advances (2022). DOI: 10.1126/sciadv.abm2055www.science.org/doi/10.1126/sciadv.abm2055

Comment by Dr. Krishna Kumari Challa on June 2, 2022 at 5:55am

How the brain responds to surprising events

When your brain needs you to pay attention to something important, one way it can do that is to send out a burst of noradrenaline, according to a new  study.

This neuromodulator, produced by a structure deep in the brain called the locus coeruleus, can have widespread effects throughout the brain. In a study of mice, the MIT team found that one key role of noradrenaline, also known as norepinephrine, is to help the brain learn from surprising outcomes.

Noradrenaline is one of several neuromodulators that influence the brain, along with dopamine, serotonin, and acetylcholine. Unlike neurotransmitters, which enable cell-to-cell communication, neuromodulators are released over large swathes of the brain, allowing them to exert more general effects.

Neuromodulatory substances are thought to perfuse large areas of the brain and thereby alter the excitatory or inhibitory drive that neurons are receiving in a more point-to-point fashion. This suggests they must have very crucial brain-wide functions that are important for survival and for brain state regulation.

The researchers also found that the neurons that generate this noradrenaline signal appear to send most of their output to the motor cortex, which offers more evidence that this signal stimulates the animals to take action.

 Noradrenaline has been linked to arousal and boosting alertness, but too much noradrenaline can lead to anxiety.

This work shows that the locus coeruleus encodes unexpected events, and paying attention to those surprising events is crucial for the brain to take stock of its environment. 

In addition to its role in signaling surprise, the researchers also discovered that noradrenaline helps to stimulate behavior that leads to a reward, particularly in situations where there is uncertainty over whether a reward will be offered.

Mriganka Sur, Spatiotemporal dynamics of noradrenaline during learned behaviour, Nature (2022). DOI: 10.1038/s41586-022-04782-2www.nature.com/articles/s41586-022-04782-2

 

Members (22)

 
 
 

Badge

Loading…

© 2024   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service