SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 9 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

Why do different kinds of environments change the anatomies, appearances, biology and/or physiologies of the wild animals and/or plants after migrating?

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Monday. 1 Reply

Q: Why do different kinds of environments change the anatomies, appearances, biology and/or physiologies of the wild animals and/or plants after migrating?Krishna: Different environments exert…Continue

Why antibiotic resistance is increasing and how our friendly ubiquitous scientists are trying to tackle it

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Apr 27. 4 Replies

Why is antibiotic resistance increasing? It is the result of evolution!And why should bacteria evolve? In order to survive! Because antibiotics are their 'poison'.If they can't surmount this problem…Continue

Is human body a super-organism?!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Apr 27. 1 Reply

Q: Is the human race a superorganism?Krishna: Not entire human race. The human body? To some extent!Recently somebody told me they feel lonely. This was my reply to them:Do you think you are alone?…Continue

Why Generic drugs are important

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Apr 26. 2 Replies

A generic drug  (or generics in plural) is a drug defined as "a drug product that is comparable to a brand/reference listed drug product in dosage form, strength, quality and performance…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on April 17, 2022 at 10:09am

Researchers gathered a sample of microbes they knew to be dominated by this methane-slurping archaea, and grew them in an oxygen-lacking environment where methane was the only electron donor.

Near this colony they also placed a metal anode set at zero voltage, effectively creating an electrochemical cell primed to generate a current.

They created a kind of battery with two terminals, where one of these is a biological terminal and the other one is a chemical terminal. 

Researchers grew the bacteria on one of the electrodes, to which the bacteria donate electrons resulting from the conversion of methane. 

After analyzing the conversion of methane to carbon dioxide and measuring fluctuating currents that spiked as high as 274 milliamps per square centimeter, the team deduced a little over a third of the current could be attributed directly to the breaking down of methane.

As far as efficiency goes, 31 percent of the energy in the methane had transformed into electrical power, making it somewhat comparable with some power stations.

Tinkering more with the process could see to the creation of highly efficient living batteries that run on biogas, wringing more spark from every bit of gas and reducing the need for piping methane over long distances. 

https://www.frontiersin.org/articles/10.3389/fmicb.2022.820989/full

https://www.sciencealert.com/these-microbes-breathe-in-methane-and-...

Part 2

**

Comment by Dr. Krishna Kumari Challa on April 17, 2022 at 10:06am

Some Microbes Breathe Methane And Turn It Into Electricity in a Weird Living Battery

As far as greenhouse gases go, methane is the quiet villain that could stealthily drag us ever deeper into the climate crisis. In our atmosphere, it is at least 25 times more effective at trapping heat than carbon dioxide.

It's also not that efficient – through burning, less than half of the energy in the natural gas can be converted into electrical power.

In an effort to squeeze more electrons from every puff of methane, researchers in the Netherlands have explored a rather unconventional form of power station – one you'd need a microscope to see.

"In the current biogas installations, methane is produced by microorganisms and subsequently burnt, which drives a turbine, thus generating power. Less than half of the biogas is converted into power, and this is the maximum achievable capacity. But can we  do better using microorganisms?

Scientists found a type of archaea – bacteria-like microbes known for their extraordinary talents of surviving under strange and harsh conditions, including being able to break down methane in environments deprived of oxygen.

This specific type, known as anaerobic methanotrophic (ANME) archaea, manage this metabolic trick by offloading electrons in a chain of electrochemical reactions, employing some kind of metal or metalloid outside of their cells or even donating them to other species in their environment.

First described in 2006, the ANME genus Methanoperedens was found to oxidize methane with a little help from nitrates, making them right at home in the wet bogs of the Netherland's fertilizer-soaked agricultural culverts.

Attempts to pull electrons from this process in microbial fuel cells have resulted in tiny voltages being produced, without any clear confirmation on exactly which processes might be behind the conversion.

If these archaea are to ever show promise as methane-gobbling power cells, they'd really need to churn out a current in a clear, unambiguous fashion.

Part 1

Comment by Dr. Krishna Kumari Challa on April 16, 2022 at 11:38am

International collaboration reveals how the human brain evolved to harness abstract thought

 The human brain is organized in functional networks—connected brain regions that communicate with each other through dedicated pathways. That is how we perceive our senses, how the body moves, how we are able to remember the past and plan for the future. The "default mode" network is the part of our connected brain that is responsible for abstract and self-directed thought. When we process external sensory information, the default mode network turns off, and when there is less going on outside our bodies it turns on. Whether the same default mode network is found in mammals similar to humans has not been firmly answered; different studies have yielded different conclusions.

In an international collaboration across seven laboratories, in five institutions, across three countries , researchers compared data from humans and non-hominoid primates (macaques, marmosets and mouse lemurs) to more definitively answer this question.
Surprisingly, these results showed that in all species other than humans, the brain areas that comprise the default mode network involve two systems not strongly connected with each other.

These regions, one responsible for suppression of external events and one for more cognitive tasks, appear to be linked only recently in evolution. It is this linkage that may have facilitated the capacity for abstract thought that led to the rapid evolution of human cognitive abilities.

The unexpected finding changes the way we think about brain networks. Atypical patterns of connectivity between brain areas are signatures of neurodevelopmental disorders and mental illnesses. These conditions are a significant health and societal issue that affects individuals' ability to healthily function in society. Understanding how unusual patterns of brain connectivity emerge could lead to better diagnosis and treatment of these conditions.

The article, "An evolutionary gap in primate default mode network organization" was published in the journal Cell Reports on April 12.

https://engineering.vanderbilt.edu/news/2022/international-collabor...

https://researchnews.cc/news/12686/International-collaboration-reve...

Comment by Dr. Krishna Kumari Challa on April 16, 2022 at 9:52am

Latest recommendations on how waist-to-height ratio can impact your health

New health guidance on the need to keep your waist size to half your height to ensure healthy living was recommended by Bayes Business School eight years ago.

In 2014, research from Bayes Business School showed that the waist-to-height ratio (WHtR) is a better predictor of mortality risk than the commonly used BMI.

Today, draft guidance from the National Institute for Health and Care Excellence (NICE) has stated that an adult's waist should be less than half their height to reduce , including type 2 diabetes and .

The guidance, published ahead of the release of a full report in September, also says that while measuring  (BMI) is useful it doesn't consider excess weight around the abdomen—scientifically termed "central adiposity."

These new recommendations come after researchers at Bayes Business School and Ashwell Associates called for the measurement— divided by height—to replace BMI in primary public health screening.

The study found that as many as 20 years of life for men can be lost by failing to sustain your waistline. The figure is approximately 10 years for women.

Margaret Ashwell et al, Waist-to-Height Ratio Is More Predictive of Years of Life Lost than Body Mass Index, PLoS ONE (2014). DOI: 10.1371/journal.pone.0103483

https://medicalxpress.com/news/2022-04-latest-waist-to-height-ratio...

**

Comment by Dr. Krishna Kumari Challa on April 16, 2022 at 9:31am

Injectable stem cell assembly for cartilage regeneration

A new study  has established an injectable hybrid inorganic (IHI) nanoscaffold-templated stem cell assembly and applied it to the regeneration of critically-sized cartilage defects.

Cartilage injuries are often devastating and most of them have no cures due to the intrinsically low regeneration capacity of cartilage tissues. The rise of 3D stem cell culture systems has led to breakthroughs in developmental biology, disease modeling, and regenerative medicine. For example, stem cells, once transplanted successfully, could initially secret trophic factors for reducing inflammation at sites of cartilage injuries and then differentiate into cartilage cells (e.g., chondrocytes) for functional restoration. Nevertheless, there are critical barriers remaining to be overcome before the therapeutic potential of stem cell therapies can be realized. The limited control over the chondrogenic differentiation of stem cells in vivo has often resulted in compromised regenerative outcomes. Moreover, due to the prevalence of oxidative stress and inflammation in the microenvironment of injury sites, stem cells frequently undergo apoptosis after injection. To address these challenges, the researchers demonstrated the development of a 3D IHI nanoscaffold-templated stem cell assembly system for advanced 3D stem cell culture and implantation. 3D-IHI nanoscaffold rapidly assembles stem cells into injectable tissue constructs through tailored 3D cell-cell and cell-matrix interactions, deeply and homogeneously delivers chondrogenic proteins in the assembled 3D culture systems, and controllably induces chondrogenesis through nanotopographical effects.

Once implanted in vivo in a rabbit cartilage injury model, 3D-IHI nanoscaffold effectively modulates dynamic microenvironment after cartilage injury through the integration of the aforementioned regenerative cues, and simultaneously scavenges  using a manganese dioxide-based composition. In this way, accelerated repair of cartilage defects with rapid tissue reconstruction and functional recovery is realized both in the short term and long term. Given the excellent versatility and therapeutic outcome of 3D-IHI nanoscaffold-based cartilage regeneration, it may provide promising means to advance a variety of tissue engineering applications.

Shenqiang Wang et al, Injectable hybrid inorganic nanoscaffold as rapid stem cell assembly template for cartilage repair, National Science Review (2022). DOI: 10.1093/nsr/nwac037

https://phys.org/news/2022-04-stem-cell-cartilage-regeneration.html...

Comment by Dr. Krishna Kumari Challa on April 16, 2022 at 9:08am

Gut bacterium supports growth in infants with severe acute malnutrition

About 18 million children under age five suffer from severe acute malnutrition, and more than 3 million children die from it each year. Treatment with high-calorie supplemental foods and antibiotics can prevent deaths, but these interventions often have limited impact on the long-term effects of severe acute malnutrition, such as persistent stunted growth, disrupted immune function and impaired brain development. Even when treated with standard therapeutic foods, many children continue to have moderate forms of the disease and are at risk of falling back into severe acute malnutrition.

A new study, published April 13 in the journal Science Translational Medicine, from Washington University School of Medicine in St. Louis and the International Center for Diarrheal Disease Research in Dhaka, Bangladesh (icddr,b), shows that a standard milk-based therapy plus treatment with a specific strain of gut bacteria known as Bifidobacterium infantis (B. infantis) for four weeks promotes weight gain in infants with severe acute malnutrition, with accompanying reductions in gut inflammation. 

The B. infantis strain was chosen for the trial because it has been shown to be safe to give to infants as a probiotic and is known to thrive on specific carbohydrates present in human breast milk. Importantly, the investigators found that B. infantis was either undetectable or present in markedly reduced amounts in infants with severe acute malnutrition compared to those with healthy growth.

 Michael J. Barratt et al, Bifidobacterium infantis treatment promotes weight gain in Bangladeshi infants with severe acute malnutrition, Science Translational Medicine (2022). DOI: 10.1126/scitranslmed.abk1107

https://medicalxpress.com/news/2022-04-gut-bacterium-growth-infants...

Comment by Dr. Krishna Kumari Challa on April 15, 2022 at 12:47pm

The time-of-flight neutron spectrometer Pelican at ANSTO's Center for Neutron Scattering has been used to measure the vibrational densities of states for several liquid systems including water, , and polymer liquids. The Pelican instrument has the extreme sensitivity to measure rotational and translational vibrations over short time intervals and at low energies.

The experiments at ANSTO confirmed the linear relationship of the vibrational density of states with frequency at low energies as predicted earlier.

Caleb Stamper et al, Experimental Confirmation of the Universal Law for the Vibrational Density of States of Liquids, The Journal of Physical Chemistry Letters (2022). DOI: 10.1021/acs.jpclett.2c00297

Alessio Zaccone et al, Universal law for the vibrational density of states of liquids, Proceedings of the National Academy of Sciences (2021). DOI: 10.1073/pnas.2022303118

https://phys.org/news/2022-04-surfing-atomic-scale-scientists-exper...

Part 2

Comment by Dr. Krishna Kumari Challa on April 15, 2022 at 12:46pm

Scientists experimentally confirm new fundamental law for liquids

The first experimental evidence to validate a newly published universal law that provides insights into the complex energy states for liquids has been found using an advanced nuclear technique.

 

The equation for the vibrational density of states formulated by Alessio Zaccone and Matteo Bagglioli was published in a paper in PNAS in 2021, providing an answer to a question that has been elusive for at least a century.

The elegant mathematical theory has solved the problem of obtaining the distribution of these complex energy states for liquids.

"One of the most important quantities in the physics of matter is the distribution of the frequencies or vibrational energies of the waves that propagate in the material. It is particularly important as it is the starting point for calculating and understanding some fundamental properties of matter, such as specific heat and thermal conductivity, and the light-matter interaction.

The big problem with liquids is that, in addition to acoustic waves, there are other types of vibrational excitations related to low energies of the disordered motion of atoms and molecules— excitations that are almost absent in solids. These excitations are typically short-lived and are linked to the dynamic chaos of molecular motions but are nevertheless very numerous and important, especially at low energies. Mathematically, these excitations, known as 'instantaneous normal modes' or INMs in the specialized literature are very difficult to deal with as they correspond to energy states described by imaginary numbers.

Part 1

Comment by Dr. Krishna Kumari Challa on April 15, 2022 at 11:47am

 Declining nitrogen availability in a nitrogen rich world

Research and discussion in recent times  has focused on the negative effects of excess nitrogen on terrestrial and aquatic ecosystems. However, new evidence indicates that the world is now experiencing a dual trajectory in nitrogen availability with many areas experiencing a hockey-stick shaped decline in the availability of nitrogen. In a new review paper in the journal Science, researchers have described the causes for these declines and the consequences on how ecosystems function.

There is both too much nitrogen and too little nitrogen on Earth at the same time now. 

Over the last century, humans have more than doubled the total global supply of reactive nitrogen through industrial and agricultural activities. This nitrogen becomes concentrated in streams, inland lakes, and coastal bodies of water, sometimes resulting in eutrophication, low-oxygen dead-zones, and harmful algal blooms. These negative impacts of excess nitrogen have led scientists to study nitrogen as a pollutant. However, rising CO2 and other global changes have increased demand for nitrogen by plants and microbes. In many areas of the world that are not subject to excessive inputs of nitrogen from people, long-term records demonstrate that nitrogen availability is declining, with important consequences for plant and animal growth.

Nitrogen is an essential element in proteins and as such its availability is critical to the growth of plants and the animals that eat them. Gardens, forests, and fisheries are almost all more productive when they are fertilized with moderate amounts of nitrogen. If plant nitrogen becomes less available, plants grow more slowly and their leaves are less nutritious to insects, potentially reducing growth and reproduction, not only of insects, but also the birds and bats that feed on them.

When nitrogen is less available, every living thing holds on to the element for longer, slowing the flow of nitrogen from one organism to another through the food chain. This is why we can say that the nitrogen cycle is slowing down.

Researchers reviewed long-term, global and regional studies and found evidence of declining nitrogen availability. 

These declines are likely caused by multiple environmental changes, one being elevated atmospheric CO2 changes. Atmospheric carbon dioxide has reached its highest level in millions of years, and terrestrial plants are exposed to about 50% more of this essential resource than just 150 years ago. Elevated atmospheric carbon dioxide fertilizes plants, allowing faster growth, but diluting plant nitrogen in the process, leading to a cascade of effects that lower the availability of nitrogen. On top of increasing atmospheric CO2, warming and disturbances, including wildfire, can also reduce availability over time.

Declining nitrogen availability is also likely constraining the ability of plants to remove carbon dioxide from the atmosphere.

Rachel E. Mason et al, Evidence, Causes, and Consequences of Declining Nitrogen Availability in Terrestrial Ecosystems, Science (2022). DOI: 10.1126/science.abh3767www.science.org/doi/10.1126/science.abh3767

Comment by Dr. Krishna Kumari Challa on April 14, 2022 at 8:57am

The lifespan secret

Ageing is linked to accumulated mutations - according to new research.

 

Members (22)

 
 
 

© 2024   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service