SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 5 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

Why antibiotic resistance is increasing and how our friendly ubiquitous scientists are trying to tackle it

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 7 hours ago. 4 Replies

Why is antibiotic resistance increasing? It is the result of evolution!And why should bacteria evolve? In order to survive! Because antibiotics are their 'poison'.If they can't surmount this problem…Continue

Is human body a super-organism?!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 10 hours ago. 1 Reply

Q: Is the human race a superorganism?Krishna: Not entire human race. The human body? To some extent!Recently somebody told me they feel lonely. This was my reply to them:Do you think you are alone?…Continue

Why Generic drugs are important

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 2 Replies

A generic drug  (or generics in plural) is a drug defined as "a drug product that is comparable to a brand/reference listed drug product in dosage form, strength, quality and performance…Continue

Different routes of drug administration

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply

Q: What are the different routes of drug administration, and how do they affect drug bioavailability? A medication administration route is often classified by the location at which the drug is…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on November 20, 2021 at 10:55am

Frozen —or any kind of frozen meats, for that matter—contain a lot of ice. Raw meat can be anywhere from 56% to 73% water. If you have ever thawed a frozen piece of meat, you have probably seen all the liquid that comes out.

For deep-frying, cooking oil is heated to around 350 degrees Fahrenheit (175 C). This is much hotter than the boiling point of water, which is 212 F (100 C). So when the ice in a frozen turkey comes in contact with the hot oil, the surface ice quickly turns to steam.

This quick transition is not a problem when it happens at the very surface of the oil. The steam escapes harmlessly into the air.

However, when you submerge a turkey into the oil, the ice inside the turkey absorbs the heat and melts, forming liquid water. Here is where the density comes into play.

This liquid water is more dense than the oil, so it falls the bottom of the pot. The water molecules continue to absorb heat and energy and eventually they change phases and become steam. The  then rapidly spread far apart from one another and the volume expands by 1,700 times. This expansion causes the density of the  to drop to a fraction of a percent of the density of the oil, so the gas wants to quickly rise to the surface.

Combine the fast change in  together with the expansion of volume and you get an explosion. The steam expands and rises, blowing the boiling oil out the pot. If that weren't dangerous enough, as the displaced oil comes into contact with a burner or flame, it can catch fire. Once some droplets of oil catch on fire, the flames will quickly ignite nearby oil molecules, resulting in a fast-moving and often catastrophic fire.

Every year, thousands of accidents like this happen. So, should you decide to deep-fry a turkey for this year's Thanksgiving, be sure to thoroughly thaw it and pat it dry. And next time you add a bit of liquid to an oil-filled pan and end up with oil all over the stove, you'll know the science of why.

https://theconversation.com/why-do-frozen-turkeys-explode-when-deep...

Part 3

**

Comment by Dr. Krishna Kumari Challa on November 20, 2021 at 10:54am

While different materials have different densities, liquids, solids and gases of a single material can have different densities as well. You observe this every time you place an  in a glass of water: The ice floats to the top because it is less dense than water.

When water absorbs heat, it changes to its gas phase, steam. Steam occupies 1,700 times the volume as the same number of liquid water molecules. You observe this effect when you boil water in a tea kettle. The force of expanding gas pushes steam out of the kettle through the whistle, causing the squealing noise.

Part 2

Comment by Dr. Krishna Kumari Challa on November 20, 2021 at 10:53am

Why do frozen turkeys explode when deep-fried?

Deep-frying a turkey is a great way to get a delicious, moist meal for Thanksgiving. But this method of cooking can be a very dangerous undertaking.

Every fall, millions of dollars of damage, trips to the ER and even deaths result from attempts to deep-fry turkeys. The vast majority of these accidents happen because people put frozen turkeys into boiling oil. If you are considering deep-frying this year, do not forget to thaw and dry your turkey before placing it in the pot. Failure to do so may lead to an explosive disaster.

What is so dangerous about putting even a partially frozen turkey in a deep-fryer?

The reason frozen turkeys explode, at its core, has to do with differences in density. Density is how much an object weighs given a specific volume. There is a difference in density between oil and water and differences in the density of water between its solid, liquid and gas states. When these density differences interact in just the right way, you get an explosion.

The first important density difference when it comes to frying is that water is more dense than oil. This has to do with how tightly the molecules of each substance pack together and how heavy the atoms are that make up each liquid.

Water molecules are small and pack tightly together. Oil molecules are much larger and don't pack together as well by comparison. Additionally, water is composed of oxygen and hydrogen atoms, while oils are predominantly carbon and hydrogen. Oxygen is heavier than carbon. This means that, for example, one cup of water has more atoms than one cup of oil, and those individuals atoms are heavier. This is why oil floats on top of water. It is less dense.

Part 1

Comment by Dr. Krishna Kumari Challa on November 20, 2021 at 10:28am

This study on UTI was a proof of concept that whole-cell vaccines are more effective in this extreme, lethal-sepsis model. Showing that this works against recurrent UTI would be a significant breakthrough.

Beyond recurrent UTI or urosepsis, researchers think the antigen depot method could be applied broadly to bacterial infections, including endocarditis and tuberculosis.

Michael A. Luzuriaga et al, Metal–Organic Framework Encapsulated Whole-Cell Vaccines Enhance Humoral Immunity against Bacterial Infection, ACS Nano (2021). DOI: 10.1021/acsnano.1c03092

https://phys.org/news/2021-11-scientists-vaccine-method-recurrent-u...

Part 3

**

Comment by Dr. Krishna Kumari Challa on November 20, 2021 at 10:27am

Vaccines using whole-cell dead bacteria haven't succeeded because the cells typically don't last long enough in the body to produce long-term, durable immune responses.

That's the reason for  this new MOF antigen depot: It allows an intact, dead pathogen to exist in tissue longer, as if it were an infection, in order to trigger a full-scale immune system response.

The metal-organic framework Gassensmith's team developed encapsulates and immobilizes an individual bacterium cell in a crystalline polymeric matrix that not only kills the bacterium but also preserves and stabilizes the dead cell against high temperature, moisture and organic solvents.

In their experiments, the researchers used a strain of Escherichia coli. There are no vaccines against any pathogenic strain of this bacterium. Uropathogenic E. coli causes about 80% of all community-acquired UTIs.

"When we challenged these mice with a lethal injection of bacteria, after they were vaccinated, almost all of our animals survived, which is a much better performance than with traditional vaccine approaches," Gassensmith said. "This result was repeated multiple times, and we're quite impressed with how reliable it is."

Although the method has not yet been tested in humans, De Nisco said it has the potential to help millions of patients.

part 2

Comment by Dr. Krishna Kumari Challa on November 20, 2021 at 10:08am

Scientists develop promising vaccine method against recurrent UTI

Researchers are investigating the use of whole-cell vaccines to fight urinary tract infection (UTI), part of an effort to tackle the increasingly serious issue of antibiotic-resistant bacteria. They  recently demonstrated the use of metal-organic frameworks (MOFs) to encapsulate and inactivate whole bacterial cells to create a "depot" that allows the vaccines to last longer in the body.

The resulting study, published online Sept. 21 in the American Chemical Society's journal ACS Nano, showed that in mice this method produced substantially enhanced antibody production and significantly higher survival rates compared to standard whole-cell vaccine preparation methods.

Vaccination as a therapeutic route for recurrent UTIs is being explored because antibiotics aren't working anymore. Patients are losing their bladders to save their lives because the bacteria cannot be killed by antibiotics or because of an extreme allergy to antibiotics, which is more common in the older population than people may realize. If not successfully treated, a UTI can lead to sepsis, which can be fatal. Even if you clear the bacteria from the bladder, populations persist elsewhere and usually become resistant to the antibiotic used. When patients accumulate antibiotic resistances, they're eventually going to run out of options.

Vaccines work by introducing a small amount of killed or weakened disease-causing germs, or some of their components, to the body. These antigens prompt the immune system to produce antibodies against a particular disease. Building vaccines against pathogenic bacteria is inherently difficult because bacteria are significantly larger and more complex than viruses. Selecting which biological components to use to create antigens has been a major challenge.

Consequently, using the entire cell is preferable to choosing just a piece of a bacterium

part 1

Comment by Dr. Krishna Kumari Challa on November 20, 2021 at 9:32am

Dengue antibodies can knock out Zika—and vice versa

Cross-protective antibodies from dengue and Zika last far longer than previously thought, scientists have found in a massive study involving more than 4,000 children in Nicaragua.

The 11-year longitudinal analysis unexpectedly revealed that antibodies from either dengue or Zika—which naturally protect against infections caused by either virus—remain stable for years and do not precipitously wane.

Solving scientific mysteries about old foes such as dengue, and an emerging infection like Zika, helps lay the scientific groundwork for better responding to future outbreaks.

It has been previously thought that initial infection with dengue or Zika [viruses] leads to antibodies that are initially protective but wane over time to a point where they become enhancing and drive severe disease.

Cross-reactive antibody protection became abundantly clear during the Zika epidemic of 2015, which swept through multiple Caribbean, Central and South American countries. Stunningly, the incidence of dengue disease dropped dramatically in the midst of the surging Zika outbreak. Dengue and Zika are members of the same family of flaviviruses, so patients who had recovered from dengue infections had cross-protective antibodies capable of neutralizing dengue and Zika. Both viruses are carried by Aedes aegypti mosquitoes.

Yet, previous studies had suggested that the cross-reactive antibodies lasted only two years before dropping to levels that actually made future dengue infections more likely. Scientists in 2015 also had recognized—at least anecdotally—that some people surprisingly had immune protection against the newly emerged Zika virus.

So scientists designed a new study to understand this that allowed them to track antibody responses to initial and secondary dengue as well as to Zika infections. The team focused on community-based and hospital cohorts of children in Nicaragua. To their surprise, instead of diminishing, the antibody kenetics research allowed the scientists to conclude that cross-protective antibodies remained stable for as long as 11 years.

They found that t overall dengue virus iELISA titers stabilized by eight months after primary dengue infection to a half-life longer than a human life and [then] waned.

The half-life, which is longer than a human life, was estimated at 130,000 years, according to the team's research.

The team also observed cross-protective antibodies that were similarly stable in children who were infected with Zika virus. However, the amount of cross-protective antibodies differed across children, which suggests that the quantity of antibodies determines the degree of protection.

Leah C. Katzelnick et al, Dengue and Zika virus infections in children elicit cross-reactive protective and enhancing antibodies that persist long term, Science Translational Medicine (2021). DOI: 10.1126/scitranslmed.abg9478

https://medicalxpress.com/news/2021-11-secrets-antibodies-dengue-zi...

Comment by Dr. Krishna Kumari Challa on November 20, 2021 at 9:03am

The Birth of Microbiology

Comment by Dr. Krishna Kumari Challa on November 19, 2021 at 3:51pm

Severe spinal cord injuries repaired with 'dancing molecules'

https://www.youtube.com/watch?v=Q_xvCE904YU&t=184s

Comment by Dr. Krishna Kumari Challa on November 19, 2021 at 3:28pm

Warmer soil stores less carbon: study

Global warming will cause the world's soil to release carbon, new research shows.

Scientists used data on more than 9,000  from around the world, and found that  "declines strongly" as average temperatures increase.

This is an example of a "positive feedback", where  causes more  to be released into the atmosphere, further accelerating climate change.

Importantly, the amount of carbon that could be released depends on the , with coarse-textured (low-clay) soils losing three times as much carbon as fine-textured (clay-rich) soils.

The researchers  say their findings help to identify vulnerable carbon stocks and provide an opportunity to improve Earth System Models (ESMs) that simulate future climate change.

Because there is more carbon stored in soils than there is in the atmosphere and all the trees on the planet combined, releasing even a small percentage could have a significant impact on our climate.

This analysis identified the carbon stores in coarse-textured soils at high-latitudes (far from the Equator) as likely to be the most vulnerable to .

Such stores, therefore, may require particular attention given the high rates of  taking place in cooler regions.

In contrast, researchers found carbon stores in fine-textured soils in  to be less vulnerable to climate warming.

By comparing carbon storage in places with different average temperatures, the researchers estimated the likely impact of global warming.

For every 10°C of increase in temperature, average carbon storage (across all soils) fell by more than 25%.

These results make it clear that, as temperatures rise, more and more carbon is release from soil.

The differences in carbon storage based on soil texture occur because finer soils provide more mineral surface area for carbon-based organic material to bond to, reducing the ability of microbes to access and decompose it.

Temperature effects on carbon storage are controlled by soil stabilisation capacities, Nature Communications (2021). DOI: 10.1038/s41467-021-27101-1

https://phys.org/news/2021-11-warmer-soil-carbon.html?utm_source=nw...

 

Members (22)

 
 
 

Badge

Loading…

© 2024   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service