SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 8 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

What is a three body problem?

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 8 hours ago. 1 Reply

Q: What is a three body problem?Krishna: I don't know about  science fiction or movies that are made based on the theme, but I will tell you what it is based on science.  Systems with two objects…Continue

Your Biological Age Can Be Different From Your Actual (Chronological)Age!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 11 hours ago. 6 Replies

Recently I have seen an old lady teasing an young girl who became breathless after climbing up a few steps.  "Look I am 78. But still I can climb steps with ease. I can go anywhere I want without any…Continue

How Soil Microorganisms Can Combat Desertification

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 12 hours ago. 1 Reply

 Soil Microbiology is the specialized subject I studied during my Post…Continue

DNA can be considered as a natural flame retardant and suppressant

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply

Q: Is DNA fire-proof?Krishna: Research has shown that DNA is flame retardant (1). Yes, DNA can be considered as a natural flame retardant and suppressant.NORMALLY, COTTON FABRICS are highly…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on Saturday

Prosopometamorphopsia: a condition where people see  'demonic' face distortions

Imagine if every time you saw a face, it appeared distorted. Well, for those who have a very rare condition known as prosopometamorphopsia (PMO), which causes facial features to appear distorted, that is reality.

Prosopometamorphopsia explains, "Prosopo comes from the Greek word for face 'prosopon' while 'metamorphopsia' refers to perceptual distortions.  Specific symptoms vary from case to case and can affect the shape, size, color, and position of facial features. The duration of PMO also varies; it "can last for days, weeks, or even years.

A new Dartmouth study published in the "Clinical Pictures" section of The Lancet reports on a unique case of a patient with PMO. The research is the first to provide accurate and photorealistic visualizations of the facial distortions experienced by an individual with PMO.

The patient, a 58-year-old male with PMO, sees faces without any distortions when they are viewed on a screen and on paper, but he sees distorted faces that appear "demonic" when viewed in-person. Most PMO cases however, see distortions in all contexts, so his case is especially rare and presented a unique opportunity to accurately depict his distortions.

Scientists have heard from multiple people with PMO that they have been diagnosed by psychiatrists as having schizophrenia and put on anti-psychotics, when their condition is a problem with the visual system,  according to the researchers.

And it's not uncommon for people who have PMO to not tell others about their problem with face perception because they fear others will think the distortions are a sign of a psychiatric disorder.

"It's a problem that people often don't understand."

Through their paper, the researchers hope to increase public awareness of what PMO is.

Visualising facial distortions in prosopometamorphopsia, The Lancet (2024). www.thelancet.com/journals/lan … (24)00136-3/fulltext

Comment by Dr. Krishna Kumari Challa on Saturday

Messenger RNAs with multiple 'tails' could lead to more effective therapeutics: researchers

Messenger RNA (mRNA) made its big leap into the public limelight during the pandemic, thanks to its cornerstone role in several COVID-19 vaccines. But mRNAs, which are genetic sequences that instruct the body to produce proteins, are also being developed as a new class of drugs. For mRNAs to have broad therapeutic uses, however, the molecules will need to last longer in the body than those that make up the COVID vaccines.

Researchers have engineered a new mRNA structure by adding multiple "tails" to the molecules that boosted mRNA activity levels in cells by five to 20 times. They  also showed that their multi-tailed mRNAs lasted two- to three-times longer in animals compared to unmodified mRNA, and when incorporated into a CRISPR gene-editing system, resulted in more efficient gene editing in mice.

The new mRNAs, reported in Nature Biotechnology, could potentially be used to treat diseases that require long-lasting treatments that edit genes or replace faulty proteins.

Scientists have shown that non-natural structures can function so much better than naturally occurring ones. This research has given them a lot of confidence in their ability to modify mRNA molecules chemically and topologically.

Branched chemically modified poly(A) tails enhance the translation capacity of mRNA, Nature Biotechnology (2024). DOI: 10.1038/s41587-024-02174-7

Comment by Dr. Krishna Kumari Challa on Saturday

The dissimilar smells of babies and teenagers

A team of aroma chemists has uncovered the reasons for the dissimilar smells between babies and teenagers. The study is published in the journal Communications Chemistry.

Prior research and anecdotal evidence have shown that babies have a pleasant smell, often described as sweet. Teenagers, on the other hand, especially males, have often been described as smelling less pleasant. In this new effort, the research team sought to find out what causes the difference.

The researchers recruited the parents of 18 children aged up to 3 years old to wash the youngsters with a fragrance-free gel and to take swap samples of the armpits of their pajamas prior to sleep. They did the same with 18 teenagers between the ages of 14 and 18. All the cotton pads were then collected and analyzed in a lab setting.

The research team used mass spectrometry to identify the chemical compounds in the pads, and used gas chromatography along with a human sniffer to assess the odorousness of the smells associated with each chemical compound.
The researchers found that most of the chemicals responsible for body odor were similar between the two groups of volunteers. But there were a few that made the difference. Teenage sweat, for example, had high levels of many kinds of carboxylic acids, which the assessors described as "earthy, musty or cheesy."
They also found two steroids in the teen sweat not present in the baby sweat, one of which resulted in "musk or urine-like" emanations—the other, the assessors suggested, smelled more like "musk and sandalwood." Without such chemicals, the sweat of babies smelled much sweeter.
The researchers suggest that study of the chemical compounds in teen sweat could prove fruitful for makers of odor-control products. They also suggest that more work could done to better understand the impact of such odors on parents.

Diana Owsienko et al, Body odor samples from infants and post-pubertal children differ in their volatile profiles, Communications Chemistry (2024). DOI: 10.1038/s42004-024-01131-4

Comment by Dr. Krishna Kumari Challa on Saturday

The study focused on Sphingopyxis alaskensis, a common bacterium in waters off Alaska. While many studies use the bacterium Escherichia coli as a model organism, this single-celled organism is much smaller, lives in cold environments, and can survive with few nutrients. All these things make it a better candidate for potential life on the icy moons of Saturn or Jupiter.

They are extremely small, so they are in theory capable of fitting into ice grains that are emitted from an ocean world like Enceladus or Europa.

Results show that the instruments can detect this bacterium, or portions of it, in a single ice grain. Different molecules end up in different ice grains. The new research shows that analyzing single ice grains, where biomaterial may be concentrated, is more successful than averaging across a larger sample containing billions of individual grains.

A recent study led by the same researchers showed evidence of phosphate on Enceladus. This planetary body now appears to contain energy, water, phosphate, other salts and carbon-based organic material, making it increasingly likely to support lifeforms similar to those found on Earth.

The authors hypothesize that if bacterial cells are encased in a lipid membrane, like those on Earth, then they would also form a skin on the ocean's surface. On Earth, ocean scum is a key part of sea spray that contributes to the smell of the ocean. On an icy moon where the ocean is connected to the surface (e.g., through cracks in the ice shell), the vacuum of outer space would cause this subsurface ocean to boil. Gas bubbles rise through the ocean and burst at the surface, where cellular material gets incorporated into ice grains within the plume.

In the paper published by the researchers,  they described a plausible scenario for how bacterial cells can, in theory, be incorporated into icy material that is formed from liquid water on Enceladus or Europa and then gets emitted into space.

The SUrface Dust Analyzer onboard Europa Clipper will be higher-powered than instruments on past missions. This and future instruments also will for the first time be able to detect ions with negative charges, making them better suited to detecting fatty acids and lipids.

Fabian Klenner, How to Identify Cell Material in a Single Ice Grain Emitted from Enceladus or Europa, Science Advances (2024). DOI: 10.1126/sciadv.adl0849www.science.org/doi/10.1126/sciadv.adl0849

Part 2

Comment by Dr. Krishna Kumari Challa on Saturday

Signs of life detectable in single ice grain emitted from extraterrestrial moons, experimental setup shows

The ice-encrusted oceans of some of the moons orbiting Saturn and Jupiter are leading candidates in the search for extraterrestrial life. A new lab-based study  shows that individual ice grains ejected from these planetary bodies may contain enough material for instruments headed there in the fall to detect signs of life, if such life exists.

For the first time scientists have shown that even a tiny fraction of cellular material could be identified by a mass spectrometer onboard a spacecraft. These results give researchers more confidence that using upcoming instruments, they will be able to detect lifeforms similar to those on Earth, which we increasingly believe could be present on ocean-bearing moons. 

Researchers used an experimental setup that sends a thin beam of liquid water into a vacuum, where it disintegrates into droplets. They then used a laser beam to excite the droplets and mass spectral analysis to mimic what instruments on the space probe will detect.

Newly published results show that instruments slated to go on future missions, like the SUrface Dust Analyzer onboard Europa Clipper, can detect cellular material in one out of hundreds of thousands of ice grains. 

Part 1

Comment by Dr. Krishna Kumari Challa on March 22, 2024 at 9:42am

DNA attached to nanoparticles found to contribute to lupus symptoms

Autoimmune diseases are mysterious. It wasn't until the 1950s that scientists realized that the immune system could harm the organs of its own body. Even today, the fundamental causes and inner workings of most autoimmune diseases remain poorly understood, limiting the treatment options for many of these conditions.

Over the past several years, however, research has found clues for how autoimmune diseases might arise. This research has shown that DNA attached to small particles within the bloodstream is a likely culprit involved in many autoimmune diseases, especially systemic lupus erythematosus, or just lupus for short, which primarily affects young women and can cause kidney damage.

However, due to the large variety in sizes of both particles and DNA in the blood, testing to what extent and under what circumstances these DNA-particle combinations play a role in disease has been extremely difficult.

Researchers at Duke University have now developed a way to systematically test how these DNA-bound particles interact with the immune system. By using tiny particles of specific sizes, attaching DNA strands of certain lengths and exposing the resulting complexes to immune cells in a lab dish, the researchers show a better fundamental understanding of these diseases may be possible.

The results were published in the Proceedings of the National Academy of Sciences.

This new approach identified the cellular pathway that causes the harmful response to these hybrid particles, and showed that DNA bound to the surfaces of nanoparticles is protected from being degraded by enzymes.

While DNA is usually locked away within a cell's nucleus, it often gets into the bloodstream when cells die or are attacked by viruses and bacteria. While most so-called "cell-free DNA" only lasts minutes before being broken down by the body, in some people and situations, it can persist for much longer. In recent work, high levels of cell-free DNA have been closely related to the severity of lupus symptoms, and many doctors are now testing ways to use it to monitor disease activity.

Cell-free DNA may escape elimination largely by forming complexes with other molecules or attaching itself to naturally occurring particles. Depending on the origin of the DNA, it can range in length from a few hundred base pairs to several thousand. And the particles it can attach to range from 100 to 1000 nanometers in diameter.

The first important observation the team made was that DNA attached to nanoparticles was protected from degrative enzymes and that larger nanoparticles provided more protection.

The researchers think the enzymes might not be able to access the DNA to destroy it because of the shape the DNA makes with the surface of the nanoparticle.

The results showed that the macrophages responded to all types of DNA-particle complexes by producing inflammatory signals for other cells to follow, a hallmark of many autoimmune diseases.

This approach gives researchers a way to drill down and pinpoint factors that they wouldn't be able to with a purely biological system.

 Faisal Anees et al, DNA corona on nanoparticles leads to an enhanced immunostimulatory effect with implications for autoimmune diseases, Proceedings of the National Academy of Sciences (2024). DOI: 10.1073/pnas.2319634121

Comment by Dr. Krishna Kumari Challa on March 22, 2024 at 9:30am

How cells in plant leaves organize themselves to ensure optimal area for photosynthesis

Plant leaves need a large surface area to capture sunlight for photosynthesis. Researchers  have now discovered which genetic mechanisms control leaves' growth into a flat structure capable of efficiently capturing sunlight.

A kind of built-in GPS informs each cell about its relative position in the growing leaf. The order corresponds to a biological concept of self-organization.

When cells divide and multiply, the result is usually a clump of cells. So researchers wanted to know how, in the case of a leaf, cell division leads to a large flat area.

To this end, a team of mathematicians and experimental biologists worked together to track the processes using computer models, methods of molecular genetics, and imaging techniques on living organisms.

The basis of such pattern formation is polarity; that is, the ability to distinguish, in this case, between top and bottom. It is usually created by a concentration gradient of a substance, called morphogen, that is low on one side and higher on the other.

The team discovered that "small RNAs" play a decisive role in controlling the growing leaf. As mobile messengers, they are used for communication between the cells and help the cells to perceive their relative position to each other in the structure—like a GPS. In addition, the small RNAs transmit information that coordinates which genes need to be activated or inhibited on the top and bottom side to give the leaf the right shape and function.

This regulatory mechanism works autonomously in the growing leaf; there is no central control in the plant.

The small RNA molecules in the cells of the growing leaf set in motion a genetic process that enables the cells to perceive and interpret their environment. The genes' activities are coordinated among the cells in such a way that each leaf is divided in a sharply defined top and bottom part that form a perfectly flat canvas for photosynthesis.

Emanuele Scacchi et al, A diffusible small-RNA-based Turing system dynamically coordinates organ polarity, Nature Plants (2024). DOI: 10.1038/s41477-024-01634-x

Comment by Dr. Krishna Kumari Challa on March 22, 2024 at 9:19am

Neuralink shows quadriplegic playing chess with brain implant

Neuralink recently streamed a video of its first human patient playing computer chess with his mind and talking about the brain implant making that possible.

Comment by Dr. Krishna Kumari Challa on March 21, 2024 at 11:46am

Researchers find evidence of 68 'forever chemicals' in food packaging around the world

A team of environmental scientists with the Food Packaging Forum Foundation, based in Zürich, has found evidence of 68 "forever chemicals" in food packaging used around the world. For their study, published in the journal Environmental Science & Technology, the group mapped evidence of per- and polyfluoroalkyl substances (PFASs) in food contact materials using information from databases.

PFASs are a group of manmade chemical compounds that are known as "forever" chemicals because it takes them so long to break down in the environment. To date, approximately 4,730 distinct PFASs have been created. Manufacturers began using them several decades ago for their water-resistance properties. They have typically been used in such products as nonstick stain-resistant fabrics, cookware, water-repellent clothing, carpeting, cosmetics, firefighting foams, electronics and food packaging.

Over the past several decades, many PFASs have been found to have adverse health impacts on animals, including humans. Because of that, many of them have been banned around the world.

In this new study, the research team looked into the use of PFASs in food packaging around the world, as recent research has shown that the compounds can migrate into the food.

The researchers collected records from the FCCmigex database involving food packaging and any known PFAS. They found 68 of the compounds, 61 of which have been specifically banned from use in such packaging. They were only able to find potential hazards for just 57% of the compounds they found.

In looking at the compounds they found in the packaging, the research team notes that little evidence is available to explain how or why they wound up where they did. They suggest a comprehensive review of packaging be undertaken and new rules and a means for enforcing them be established.

Drake W. Phelps et al, Per- and Polyfluoroalkyl Substances in Food Packaging: Migration, Toxicity, and Management Strategies, Environmental Science & Technology (2024). DOI: 10.1021/acs.est.3c03702

Comment by Dr. Krishna Kumari Challa on March 21, 2024 at 10:06am

Decades of research have revealed trends in how the shapes and structures of different surfaces affect water's freezing point. In an earlier study on ice-nucleating proteins within bacteria, researchers found that the distances between the groups of proteins could impact the temperature at which ice formed. There were distances that were very favorable for ice formation, and distances that were completely opposite.

Similar trends had been observed for other surfaces, but no mathematical explanation had been found.

Researchers now  gathered hundreds of previously reported measurements on how the angles between microscopic bumps on a surface affected water's freezing temperature.  They then tested theoretical models against the data. They used the models to consider factors that would encourage ice crystal formation, such as how strongly water binds to the surfaces and angles between structural features.

In the end, they identified a mathematical expression that shows that certain angles between surface features makes it easier for water molecules to gather and crystallize at relatively warmer temperatures. 

They say their model can help design materials with surfaces that would make ice form more efficiently with minimal energy input. Examples include snow or ice makers, or surfaces that are suitable for cloud seeding.

The researchers plan to use this model to return to their studies of ice-nucleating proteins in bacteria.

https://www.acs.org/pressroom/presspacs/2024/march/new-model-clarif...

 

Members (22)

 
 
 

© 2024   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service