Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 1 hour ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 22 hours ago. 1 Reply 0 Likes
Why do type 2 diabetics sometimes become thin if their condition is not managed properly?Earlier we used to get this answer to the Q : Type 2 diabetics may experience weight loss and become thin due…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Movies and TV serials shaped how many people imagine a heart attack—someone clutching their chest and collapsing dramatically. But those portrayals are misleading and shouldn't be expected, say the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 13 Replies 0 Likes
Recent measles outbreak in the California state of the US ( now spread to other states too) tells an interesting story.Vaccines are not responsible for the woes people face but because of rejection…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 5 Replies 0 Likes
When I was a very young school girl, I still remember very well, my Dad used to tell me to bear the pain out and not to scream and cry whenever I hurt myself and was in severe pain. I never ever saw…Continue
Comment
he genetic code that dictates how genetic information is translated into specific proteins is less rigid than scientists have long assumed, according to research published today (November 9) in eLife. In the paper, scientists report screening the genomes of more than 250,000 species of bacteria and archaea and finding five organisms that rely on an alternate genetic code, signifying branches in evolutionary history that haven’t been fully explained.
The genetic code refers to how sequences of DNA nucleotide bases lead to specific chains of amino acids during the process of protein synthesis. To perform this synthesis, ribosomes read strands of mRNA—copies of bits of the organism’s genome—in chunks of three bases at a time. Each three-base sequence, known as a codon, binds to a specific transfer RNA (tRNA) that ferries a corresponding amino acid to the ribosome to the added to the protein chain. An organism with an alternate genetic code, like the five new instances that the study authors found, has codons that correspond to different amino acids than they would in the standard genetic code employed by the vast majority of known life forms.
The genetic code has been set in stone for 3 billion years. The fact that some organisms have found a way to change it is really fascinating . Changing the genetic code requires changing ancient, important molecules like tRNAs that are so fundamental to how biology works.
As such, the code was thought to be largely preserved across all forms of life, with scientists finding the occasional exception during the past several decades of research. In addition to finding five new alternate genetic codes, the team also verified seven others that had been discovered one-by-one in the past, bringing the total number of known exceptions in bacteria to 12.
Part of the reason changes do happen is that some bacterial genomes may have a low composition of certain nucleotides compared to others. That brings the usage of codons that rely on those nucleotides down to nearly zero, making it easier for an organism to survive shifts without altering too many proteins in a drastic way.
Part 1
The retina's photoreceptor population is formed of cones, which mediate color vision, and rods, which adapt vision in low/dim light. This study focused on cones and observed color contrast sensitivity, along the protan axis (measuring red-green contrast) and the tritan axis (blue-yellow).
All the participants were aged between 34 and 70, had no ocular disease, completed a questionnaire regarding eye health prior to testing, and had normal color vision (cone function). This was assessed using a 'Chroma Test': identifying colored letters that had very low contrast and appeared increasingly blurred, a process called color contrast.
Using a provided LED device all 20 participants (13 female and 7 male) were exposed to three minutes of 670nm deep red light in the morning between 8am and 9am. Their color vision was then tested again three hours post exposure and 10 of the participants were also tested one week post exposure.
On average there was a 'significant' 17% improvement in color vision, which lasted a week in tested participants; in some older participants there was a 20% improvement, also lasting a week.
A few months on from the first test (ensuring any positive effects of the deep red light had been 'washed out') six (three female, three male) of the 20 participants, carried out the same test in the afternoon, between 12pm to 1pm. When participants then had their color vision tested again, it showed zero improvement.
Morning exposure is absolutely key to achieving improvements in declining vision: as we have previously seen in flies, mitochondria have shifting work patterns and do not respond in the same way to light in the afternoon—this study confirms this.
Weeklong improved colour contrasts sensitivity after single 670nm exposures associated with enhanced mitochondrial function, Scientific Reports (2021). DOI: 10.1038/s41598-021-02311-1
https://medicalxpress.com/news/2021-11-morning-exposure-deep-red-de...
Part 3
In humans around 40 years old, cells in the eye's retina begin to age, and the pace of this aging is caused, in part, when the cell's mitochondria, whose role is to produce energy (known as ATP) and boost cell function, also start to decline.
Mitochondrial density is greatest in the retina's photoreceptor cells, which have high energy demands. As a result, the retina ages faster than other organs, with a 70% ATP reduction over life, causing a significant decline in photoreceptor function as they lack the energy to perform their normal role.
In studying the effects of deep red light in humans, researchers built on their previous findings in mice, bumblebees and fruit flies, which all found significant improvements in the function of the retina's photoreceptors when their eyes were exposed to 670 nanometre (long wavelength) deep red light.
"Mitochondria have specific sensitivities to long wavelength light influencing their performance: longer wavelengths spanning 650 to 900nm improve mitochondrial performance to increase energy production.
part 2
Just three minutes of exposure to deep red light once a week, when delivered in the morning, can significantly improve declining eyesight, finds a pioneering new study by UCL researchers.
Published in Scientific Reports, the study builds on the team's previous work, which showed daily three-minute exposure to longwave deep red light 'switched on' energy producing mitochondria cells in the human retina, helping boost naturally declining vision.
For this latest study, scientists wanted to establish what effect a single three-minute exposure would have, while also using much lower energy levels than their previous studies. Furthermore, building on separate UCL research in flies that found mitochondria display 'shifting workloads' depending on the time of day, the team compared morning exposure to afternoon exposure.
Researchers found there was, on average, a 17% improvement in participants' color contrast vision when exposed to three minutes of 670 nanometre (long wavelength) deep red light in the morning and the effects of this single exposure lasted for at least a week. However, when the same test was conducted in the afternoon, no improvement was seen.
Scientists say the benefits of deep red light, highlighted by the findings, mark a breakthrough for eye health and should lead to affordable home-based eye therapies, helping the millions of people globally with naturally declining vision.
Part 1
Microscopes allow scientists to see down to the level of a single micron, about the size of some organelles, such as mitochondria. Smaller elements, such as individual proteins and protein complexes, can't be seen through a microscope. Biochemistry techniques, which start with a single protein, allow scientists to get down to the nanometer scale.
"But how do you bridge that gap from nanometer to micron scale? That has long been a big hurdle in the biological sciences. Turns out you can do it with artificial intelligence—looking at data from multiple sources and asking the system to assemble it into a model of a cell.
The team trained the MuSIC artificial intelligence platform to look at all the data and construct a model of the cell. The system doesn't yet map the cell contents to specific locations, like a textbook diagram, in part because their locations aren't necessarily fixed. Instead, component locations are fluid and change depending on cell type and situation.
The clear next step is to blow through the entire human cell," Ideker said, "and then move to different cell types, people and species. Eventually we might be able to better understand the molecular basis of many diseases by comparing what's different between healthy and diseased cells.
Trey Ideker, A multi-scale map of cell structure fusing protein images and interactions, Nature (2021). DOI: 10.1038/s41586-021-04115-9. www.nature.com/articles/s41586-021-04115-9
https://phys.org/news/2021-11-cells-ai-technique-reveals.html?utm_s...
**
Part 3
they eventually determined the structure to be a new complex of proteins that binds RNA. The complex is likely involved in splicing, an important cellular event that enables the translation of genes to proteins, and helps determine which genes are activated at which times.
The insides of cells—and the many proteins found there—are typically studied using one of two techniques: microscope imaging or biophysical association. With imaging, researchers add florescent tags of various colors to proteins of interest and track their movements and associations across the microscope's field of view. To look at biophysical associations, researchers might use an antibody specific to a protein to pull it out of the cell and see what else is attached to it.
The team has been interested in mapping the inner workings of cells for many years. What's different about this study is the use of deep learning to map the cell directly from cellular microscopy images. The combination of these technologies is unique and powerful because it's the first time measurements at vastly different scales have been brought together.
part 2
Most human diseases can be traced to malfunctioning parts of a cell—a tumor is able to grow because a gene wasn't accurately translated into a particular protein or a metabolic disease arises because mitochondria aren't firing properly, for example. But to understand what parts of a cell can go wrong in a disease, scientists first need to have a complete list of parts.
By combining microscopy, biochemistry techniques and artificial intelligence, researchers have taken what they think may turn out to be a significant leap forward in the understanding of human cells. The technique, known as Multi-Scale Integrated Cell (MuSIC), is described November 24, 2021 in Nature.
Scientists have long realized there's more that we don't know than we know, but now we finally have a way to look deeper. In the pilot study, MuSIC revealed approximately 70 components contained within a human kidney cell line, half of which had never been seen before. In one example, the researchers spotted a group of proteins forming an unfamiliar structure.
Part 1
C. Sanner et al. Pauli blocking of atom-light scattering. Science. Vol. 374, November, 19 2021, p. 979. doi: 10.1126/science.abh3483.
A.B. Deb and N. Kjærgaard. Observation of Pauli blocking in light scattering from quantum dege.... Science. Vol. 374, November 19, 2021, p. 972. doi: 10.1126/science.abh3470.
Y. Margalit et al. Pauli blocking of light scattering in degenerate fermions. Science. Vol. 374, November 19, 2021, p. 976. doi: 10.1126/science.abi6153
Part 3
To observe the effect, Margalit and colleagues beamed light through a cloud of lithium atoms, measuring the amount of light it scattered. Then, the team decreased the temperature to make the atoms fill up the lowest energy states, suppressing the scattering of light. As the temperature dropped, the atoms scattered 37 percent less light, indicating that many atoms were prevented from scattering light. (Some atoms can still scatter light, for example if they get kicked into higher-energy quantum states that are unoccupied.)
In another experiment, physicist Christian Sanner of the research institute JILA in Boulder, Colo., and colleagues studied a cloud of ultracold strontium atoms. The researchers measured how much light was scattered at small angles, for which the atoms are jostled less by the light and therefore are even less likely to be able to find an unoccupied quantum state. At lower temperatures, the atoms scattered half as much light as at higher temperatures.
The third experiment, performed by Deb and physicist Niels Kjærgaard, also of the University of Otago, measured a similar scattering drop in an ultracold potassium atom cloud and a corresponding increase in how much light was transmitted through the cloud.
Because the Pauli exclusion principle also governs how electrons, protons and neutrons behave, it is responsible for the structure of atoms and matter as we know it. These new results reveal the wide-ranging principle in a new context, says Sanner. “It’s fascinating because it shows a very fundamental principle in nature at work.”
The work also suggests new ways to control light and atoms. “One could imagine a lot of interesting applications,” says theoretical physicist Peter Zoller of the University of Innsbruck in Austria, who was not involved with the research. In particular, light scattering is closely related to a process called spontaneous emission, in which an atom in a high-energy state decays to a lower energy by emitting light. The results suggest that decay could be blocked, increasing the lifetime of the energetic state. Such a technique might be useful for storing quantum information for a lengthier period of time than is normally possible, for example in a quantum computer.
So far, these applications are still theoretical, Zoller says. “How realistic they are is something to be explored in the future.”
https://www.sciencenews.org/article/quantum-physics-atom-light-paul...
Part 2
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!