SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 11 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

Why do type 2 diabetics sometimes become thin if their condition is not managed properly?

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply

Why do type 2 diabetics sometimes become thin if their condition is not managed properly?Earlier we used to get this answer to the Q : Type 2 diabetics may experience weight loss and become thin due…Continue

Real heart attacks won't be like the ones shown in Hollywood or Bollywoood

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply

Movies and TV serials shaped how many people imagine a heart attack—someone clutching their chest and collapsing dramatically. But those portrayals are misleading and shouldn't be expected, say the…Continue

Vaccine woes

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 13 Replies

Recent measles outbreak in the California state of the US ( now spread to other states too) tells an interesting story.Vaccines are not responsible for the woes people face but because of rejection…Continue

Dad, this is why I scream when ever I hurt myself!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 5 Replies

When I was a very young school girl, I still remember very well, my Dad used to tell me to bear the pain out and not to scream and cry whenever I hurt myself and was in severe pain. I never ever saw…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on November 14, 2021 at 1:21pm

Researchers may have unlocked function of mysterious structure found on neurons

 For 30 years, mysterious clusters of proteins found on the cell body of neurons in the hippocampus, a part of the brain, both intrigued and baffled James Trimmer.

Now, the distinguished professor of physiology and membrane biology at the UC Davis School of Medicine may finally have an answer. In a new study published in PNAS, Trimmer and his colleagues reveal these protein clusters are calcium signaling "hotspots" in the neuron that play a crucial role in activating gene transcription.

Transcription allows portions of the neuron's DNA to be "transcribed" into strands of RNA that are then used to create the proteins needed by the cell.

Structures found in many animals
Trimmer's lab studies the enigmatic clusters in mice, but they exist in invertebrates and all vertebrates—including humans. Trimmer estimates that there can be 50 to 100 of these large clusters on a single neuron.

He and his colleagues knew that the clusters are formed by a protein that passes potassium ions through membranes (a potassium channel). They also knew these clusters contain a particular type of calcium channel. Calcium channels allow calcium to enter cells, where it triggers a variety of physiological responses depending on the type of cell.

"The presence of these clusters in neurons is highly conserved," Trimmer said. Highly conserved features are relatively unchanged through evolutionary timescales, suggesting they have an important functional property in these very different types of animals.

The hippocampus, one region of the brain where the clusters are found on neurons, plays a major role in learning and memory. Researchers knew that disruption to these clusters—for example, from genetic mutations in the potassium channel—results in severe neurological disorders. But it was not clear why.

"We have known the function of other types of ion channel clusters, for example those at synapses, for a long time. However, there was no known role that these much larger structures on the cell body played in the physiology of the neuron," Trimmer said.

Comment by Dr. Krishna Kumari Challa on November 14, 2021 at 1:09pm

Achieving razor-sharp vision in the metaverse

Comment by Dr. Krishna Kumari Challa on November 14, 2021 at 1:04pm

The gene in question, proboscipedia, would plainly reveal itself since it directs the formation of strikingly different mouth parts—smooth and spongy in D. mel but more grill-like (resembling the face of the alien in Predator science fiction films) in D. mim.

Study coauthor Emily Bulger first collected the notoriously difficult-to-breed D. mim samples from Hawai'i Volcanoes National Park, along with the only native fruit (Sapindus saponaria—Hawaiian soapberry) that the insects are known to eat, in order to establish a temporary colony in Bier's laboratory. Auradkar then collaborated with coauthor Sushil Devkota to decipher the genome sequence of the D. mim proboscipedia gene, which was nearly 44,000 bases long. The researchers then deleted the D. mel proboscipedia gene and replaced it with the D. mim version of the same.

As McGinnis had predicted, the new results revealed that the graceful facial structure of D. mel emerged as the "winner" over the rough features of D. mim. One trait of D. mim, however, did surface during the experiment: Sensory organs called maxillary palps that stick out from the face in D. mel instead ran parallel to feeding mouthparts as they do in D. mim. Auradkar used sophisticated genetic tools to determine the basis for this difference and tracked it down to a change in the pattern by which the proboscipedia gene is activated (control region changes).

The experiment's results help answer longstanding questions about whether Hox genes function as "master" regulatory genes that dictate different body parts in organisms. Or, as McGinnis proposed, whether Hox genes instead provide abstract positional codes and serve as scaffolds for downstream genes that best benefit the organism. Other than the maxillary palps, the new results demonstrated that McGinnis' scaffolding idea proved to be the case.

McGinnis says that beyond the implications for evolutionary biology, the results could help explain developmental issues rooted in fundamental human genetic processes.

"These fly studies provide a window into deep evolutionary time and inform us about the mechanisms by which body plans change during evolution," said Bier. "These insights may lead to a better of understanding of processes tied to congenital birth defects in humans. With the advent of powerful new CRISPR-based genome editing systems for human therapy on the horizon, new strategies might be formulated to mitigate some of the effects of these often debilitating conditions."

https://researchnews.cc/news/9981/New-research-helps-explain-the-ge...

part 2

**

Comment by Dr. Krishna Kumari Challa on November 14, 2021 at 1:04pm

New research helps explain the genetic basis for why we look the way we do

 Which genes control the defining features that make us look as we do? And how do they make it happen?

In 1990, University of California San Diego biologist William McGinnis conducted a seminal experiment that helped scientists unravel how high-level control genes called Hox genes shape our appearance features. The "McGinnis experiment" helped pave the way for understanding the role of Hox genes in determining the uniform appearances of species, from humans to chimpanzees to flies.

McGinnis, a professor emeritus of Cell and Developmental Biology and former dean of the Division of Biological Sciences, helped discover a defining DNA region that he termed the "homeobox," a sequence within genes that directs anatomical development. Since the now-famous McGinnis experiment, evolutionary and developmental biologists have pondered how these highly influential Hox genes determine the identities of different body regions.

More than three decades later, a study published in Science Advances and led by Ankush Auradkar, a UC San Diego postdoctoral scholar mentored by coauthor McGinnis and study senior author Ethan Bier, helps answer questions about how Hox genes function.

The now-textbook McGinnis experiment tested whether the proteins produced by a human or mouse Hox gene could function in flies. Following in these footsteps, the new study leveraged modern CRISPR gene editing to investigate whether all aspects of Hox gene function, which consists of both protein coding and control regions, could be replaced in a common laboratory fruit fly (Drosophila melanogaster) with its counterpart from a rarer Hawaiian cousin (Drosophila mimica), which has a very different face.

  1. Ankush Auradkar, Emily A. Bulger, Sushil Devkota, William McGinnis, Ethan Bier. Dissecting the evolutionary role of the Hox gene proboscipedia in Drosophila mouthpart diversification by full locus replacement. Science Advances, 2021; 7 (46) DOI: 10.1126/sciadv.abk1003

Part 1

Comment by Dr. Krishna Kumari Challa on November 14, 2021 at 12:13pm

Researchers discover link between dietary fat and the spread of cancer

A new study uncovers how palmitic acid alters the cancer genome, increasing the likelihood the cancer will spread. Researchers have started developing therapies that interrupt this process and say a clinical trial could start in the next couple of years.
Metastasis—or the spread—of cancer remains the main cause of death in cancer patients and the vast majority of people with metastatic cancer can only be treated, but not cured. Fatty acids are the building blocks of fat in our body and the food we eat. Metastasis is promoted by fatty acids in our diet, but it has been unclear how this works and whether all fatty acids contribute to metastasis.
Newly published findings reveal that one such fatty acid commonly found in palm oil, called palmitic acid, promotes metastasis in oral carcinomas and melanoma skin cancer in mice. Other fatty acids called oleic acid and linoleic acid—omega-9 and omega-6 fats found in foods such as olive oil and flaxseeds—did not show the same effect. Neither of the fatty acids tested increased the risk of developing cancer in the first place.
The research found that when palmitic acid was supplemented into the diet of mice, it not only contributed to metastasis, but also exerts long-term effects on the genome. Cancer cells that had only been exposed to palmitic acid in the diet for a short period of time remained highly metastatic even when the palmitic acid had been removed from the diet.
The researchers discovered that this "memory" is caused by epigenetic changes—changes to how our genes function. The epigenetic changes alter the function of metastatic cancer cells and allow them to form a neural network around the tumor to communicate with cells in their immediate environment and to spread more easily. By understanding the nature of this communication, the researchers uncovered a way to block it and are now in the process of planning a clinical trial to stop metastasis in different types of cancer.

Salvador Benitah, Dietary palmitic acid promotes a prometastatic memory via Schwann cells, Nature (2021). DOI: 10.1038/s41586-021-04075-0www.nature.com/articles/s41586-021-04075-0

https://researchnews.cc/news/9975/Researchers-discover-link-between...

Comment by Dr. Krishna Kumari Challa on November 13, 2021 at 11:36am

For this study, the researchers compiled an exhaustive list of all bird species that have been present in nine different archipelagos* before and after human-caused extinctions occurred. This covered 1,302 bird species, including 265 globally or locally extinct, and 355 established introductions from 143 separate species. In addition, the scientists visited different museum collections, including the Natural History Museum, to measure several morphological traits in skin or skeleton specimens. With this data, the researchers were able to quantify the trait diversity before and after bird extinctions, and identify the ecological niches extinct birds once filled.

The research team found that before human arrival, island  were more morphologically diverse than they are today. Their findings show how human-driven extinctions have disproportionally affected some types of birds (for example, larger birds and flightless birds are more likely to go extinct), leading to the loss of certain ecological roles.

The researchers also found that different archipelagos are becoming more and more similar in terms of trait diversity as native birds go extinct and the same kind of alien species are being newly established in many places.

https://phys.org/news/2021-11-birds-roles-human-caused-extinct-spec...

Part 2

Comment by Dr. Krishna Kumari Challa on November 13, 2021 at 11:35am

Introduced birds are not replacing roles of human-caused extinct species: study

Human-caused bird extinctions are driving losses of functional diversity on islands worldwide, and the gaps they leave behind are not being filled by introduced (alien) species, finds a new study.

The study, published in Science Advances, shows how human impacts such as habitat destruction and climate change are impoverishing ecosystems, even on islands where alien birds actually outnumber the species that have gone extinct.

Humans have drastically changed bird communities, not only by driving animals to extinction but also by introducing species into new habitats across the globe. There has been some debate as to whether introduced species might replace the roles of the extinct species, thus maintaining functional diversity within the ecosystem; here, researchers found that is unfortunately not the case.

 Valuable functions that may be lost with bird extinctions can include pollination and seed dispersal, which can have cascading harmful effects on other species.

Some groups of birds have been particularly successful at establishing outside their natural areas—for example, many species of parrot and starling. Because of this, islands are becoming more homogeneous as the same kind of birds are established everywhere.

These new  findings add to evidence that conservation efforts should be focused on preserving functionally distinct threatened species, to stem the tide of harmful losses to biodiversity that are driven by human actions. Huge numbers of species are being driven to extinction by human-driven effects such as habitat loss and climate change, so it is vital that we act now to reduce our negative impact on global biodiversity.

 Ferran Sayol, Loss of functional diversity through anthropogenic extinctions of island birds is not offset by biotic invasions, Science Advances (2021). DOI: 10.1126/sciadv.abj5790www.science.org/doi/10.1126/sciadv.abj5790

part 1

Comment by Dr. Krishna Kumari Challa on November 12, 2021 at 2:11pm

The Matilda effect is a bias against acknowledging the achievements of those women scientists whose work is attributed to their male colleagues. This effect was first described by suffragist and abolitionist Matilda Joslyn Gage (1826–98) in her essay, "Woman as Inventor" (first published as a tract in 1870 and in the North American Review in 1883). The term "Matilda effect" was coined in 1993 by science historian Margaret W. Rossiter. Rossiter provides several examples of this effect. Trotula (Trota of Salerno), a 12th-century Italian woman physician, wrote books which, after her death, were attributed to male authors. Nineteenth- and twentieth-century cases illustrating the Matilda effect include those of Nettie Stevens, Lise Meitner, Marietta Blau, Rosalind Franklin, and Jocelyn Bell Burnell. The Matilda effect was compared to the Matthew effect, whereby an eminent scientist often gets more credit than a comparatively unknown researcher, even if their work is shared or similar.

https://en.wikipedia.org/wiki/Matilda_effect

Comment by Dr. Krishna Kumari Challa on November 12, 2021 at 1:33pm

Researchers think that humans have evolved out of this building plan that was previously restricting the size of cortex, and they figured out a way to become more energetically efficient, so you spend less ATP [energy molecules] per volume compared to other species."

This finding reveals, the researchers said, an intriguing avenue for further investigation. In future research, the team hopes to explore the evolutionary pressures that might have led to this difference, and isolate where, exactly, that extra brain energy is going.

The research has been published in Nature.

https://www.nature.com/articles/s41586-021-04072-3

https://www.sciencealert.com/we-ve-just-found-a-fascinating-differe...

**

Part 3

Comment by Dr. Krishna Kumari Challa on November 12, 2021 at 1:32pm

When comparing the brains of the two species, the researchers found that the human dendrites had a marked lower density of these ion channels compared to rat dendrites. This was worth investigating further.

The new research has been expanded to include 10 species: shrew, mouse, gerbil, rat, ferret, guinea pig, rabbit, marmoset, macaque and, of course, human, using samples of tissue excised from epilepsy patients during brain surgery.

An analysis of the physical structure of these brains revealed that ion channel density increases with neuron size, with one notable exception: the human brain.

This, the researchers concluded, was to maintain ion channel density across a range of brain sizes; so, although the shrew had a higher number of neurons than the rabbit or the macaque in a given volume of brain, the density of ion channels in that volume was consistent.

"This building plan is consistent across nine different mammalian species. What it looks like the cortex is trying to do is keep the numbers of ion channels per unit volume the same across all the species. This means that for a given volume of cortex, the energetic cost is the same, at least for ion channels.

The exceptionally low ion channel density in the human brain was glaring, when compared with all the other brains.

All the comparison animals were significantly smaller than humans, of course, so it may be worth testing the samples of even larger animals. However, the macaque is often used in research as a model for the human brain.

The researchers suspect an evolutionary trade-off is possible for humans – this is when a biological system loses or diminishes a trait for an optimization elsewhere.

For example, it takes energy to pump ions through dendrites. By minimizing ion channel density, the human brain may have been able to deploy the energy savings elsewhere – perhaps in more complex synaptic connections, or more rapid action potentials.

"If the brain can save energy by reducing the density of ion channels, it can spend that energy on other neuronal or circuit processes

Part 2

 

Members (22)

 
 
 

Badge

Loading…

© 2025   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service