Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 1 hour ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Sunday. 1 Reply 0 Likes
Q: How Big is the universe?Krishna: The total size of the universe is not known, and some scientists think it could be many times larger than the observable portion. For example, one hypothesis…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Saturday. 1 Reply 0 Likes
Q: Why do some people commit crimes? What does science say about it?Krishna: It is easy to blame people. But did you know that the way your brain wires or rewires because of different situations it…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Jun 25. 1 Reply 0 Likes
Cars may be a modern phenomenon, but motion sickness is not. More than 2,000 years ago, the physician …Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Jun 25. 1 Reply 0 Likes
"De-evolution" or "devolution" is a concept suggesting that species can revert to more primitive forms over time.Some scientists don't accept this concept at all. They say Evolution is a continuous…Continue
Comment
How can doctors make sure a dressed wound is healing without taking off the bandage? This is a conundrum, because removing a bandage can disrupt the healing process. Technology presented in a new study in open-access journal Frontiers in Physics could help.
This new 'smart bandage' contains a sensor that can very sensitively measure wound moisture levels and then transmit the data to a nearby smartphone, without requiring doctors to remove the bandage. In the future, by changing the geometry and materials in the bandage, the researchers may be able to fine tune it to suit different types of wounds. The technology could help doctors to monitor wounds more easily and successfully.
Chronic wounds can be a source of significant suffering and disability for patients who experience them. Getting such wounds to heal is tricky and there are many factors that can affect wound healing, such as temperature, glucose levels, and acidity. However, one of the most important is moisture levels. Too dry, and the tissue can become desiccated; too wet, and it can become white and wrinkly, as it does in the bath. Both these situations disrupt the healing process.
However, if a doctor wants to check the moisture levels of a wound then they need to remove the bandage, potentially damaging the delicate healing tissue. These issues have inspired this latest smart bandage, as a way to monitor wound moisture levels non-invasively. The choice of materials was a challenge, as bandages need to be biocompatible, disposable and inexpensive.
To achieve this, the researchers applied a conductive polymer called poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) onto a gauze using a technique called screen printing, and then incorporated the gauze with commercially available bandage materials. The idea is that changes in the moisture level of the wound cause a change in an electrical signal measured by the sensor.
PEDOT:PSS is an organic semiconducting polymer that can be easily deposited on several substrates as a standard ink. Researchers also incorporated a cheap, disposable and bandage-compatible RFID tag, similar to those used for clothing security tags, into the textile patch. The tag can wirelessly communicate moisture level data with a smartphone, allowing healthcare staff to know when a bandage needs to be changed.
Wireless textile moisture sensor for wound care, Frontiers in Physics, DOI: 10.3389/fphy.2021.722173
https://phys.org/news/2021-10-smart-bandage-major-problem-chronic.h...
Metaverse is internet brought to life, or at least rendered in 3D. It as a "virtual environment" you can go inside of—instead of just looking at on a screen. Essentially, it's a world of endless, interconnected virtual communities where people can meet, work and play, using virtual reality headsets, augmented reality glasses, smartphone apps or other devices.
It also will incorporate other aspects of online life such as shopping and social media. It's the next evolution of connectivity where all of those things start to come together in a seamless, doppelganger universe, so you're living your virtual life the same way you're living your physical life.
You will be able to do things like go to a virtual concert, take a trip online, and buy and try on digital clothing. The metaverse also could be a game-changer for the work-from-home shift amid the coronavirus pandemic. Instead of seeing co-workers on a video call grid, employees could see them virtually.
For those who can afford it, users would be able, through their avatars, to flit between virtual worlds created by different companies.
A lot of the metaverse experience is going to be around being able to teleport from one experience to another.
And let me also warn you about this .... it will be based on using your personal data to sell targeted advertising, into the metaverse.
https://techxplore.com/news/2021-10-metaverse.html?utm_source=nwlet...
Combining intracranial EEG recordings with deep neural network models, researchers provided a detailed picture of the representational transformations from encoding to short-term memory maintenance and long-term memory retrieval that underlie successful episodic memory.
The results suggest that memory representations pass through multiple stages of transformations to achieve successful long-term memory formation and recall.
Overall, the findings offer further evidence of the transformation of memory-specific neural representations throughout the encoding, short-term maintenance and long-term consolidation stages of memory.
Jing Liu et al, Transformative neural representations support long-term episodic memory, Science Advances (2021). DOI: 10.1126/sciadv.abg9715
https://medicalxpress.com/news/2021-10-memories-stages-encoded.html...
Part 2
Memory, the human ability to recall things that happened in the past, is one of the topics most widely investigated by neuroscientists and psychologists. Past studies have collected extensive evidence suggesting that memory is a dynamic process, rather than a static one. In other words, instead of merely entailing the storage of events or information in the brain and their subsequent recall, memories appear to be shaped by a series of complex processes, including imagination and emotion.
Some neuroscientists have been closely examining what happens in the brain while memories are being encoded and retrieved, to better understand their neural underpinnings. They found that the neural representation patterns observed while the same memories are being encoded and retrieved are in some ways similar (i.e., there is an overlap between them), yet from the moment they are stored to when they are recalled at a later point in time, their neural representations can undergo significant transformations.
Recent findings, presented in a paper published in Science Advances, suggest that memory representations undergo several transformations while they are being encoded and consolidated in the brain.
Part 1
An astronomer's new research suggests the solar system is surrounded by a magnetic tunnel that can be seen in radio waves.
Two bright structures seen on opposite sides of the sky—previously considered to be separate—are actually connected and are made of rope-like filaments. The connection forms what looks like a tunnel around our solar system.
The data results of this research have been published in The Astrophysical Journal.
If we were to look up in the sky, say researchers, we would see this tunnel-like structure in just about every direction we looked—that is, if we had eyes that could see radio light.
Called "the North Polar Spur" and "the Fan Region," astronomers have known about these two structures for decades, West says. But most scientific explanations have focused on them individually. This new work, by contrast, reveals for the first time that they are connected as a unit.
Made up of charged particles and a magnetic field, the structures are shaped like long ropes. They are located about 350 light-years away from us, and are about 1,000 light-years long.
J. L. West et al, A Unified Model for the Fan Region and the North Polar Spur: A bundle of filaments in the Local Galaxy. arXiv:2109.14720v1 [astro-ph.GA], arxiv.org/abs/2109.14720
https://phys.org/news/2021-10-astronomer-magnetic-tunnel-solar.html...
This is the real ‘after life’
The observations were obtained using the Isotope Separator and Accelerator II at the TRIUMF National Laboratory in Canada to produce a beam of charged, radioactive rubidium-83 atoms. The TRIUMF-ISAC Gamma-Ray Escape Suppressed Spectrometer and Electromagnetic Mass Analyser recoil mass spectrometer were used to record and observe the processes taking place in the beam.
The results suggested the production of the p-nucleus strontium-84, the researchers said, consistent with the gamma process. They found that the thermonuclear reaction rate was lower than predicted by theoretical models, resulting in a higher production of strontium-84.
Their recalculated production rate was consistent with strontium-84 abundances observed in meteorites, the researchers said, and could help shed light on other astrophysical processes.
"The coupling of a high-resolution gamma-ray array with an advanced electrostatic separator to measure gamma process reactions represents a key milestone in the direct measurement of astrophysical processes.
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.112701
https://www.sciencealert.com/scientists-have-used-a-radioactive-bea...
Part 2
For the first time, physicists have been able to directly measure one of the ways exploding stars forge the heaviest elements in the Universe.
By probing an accelerated beam of radioactive ions, a team of physicists observed the proton-capture process thought to occur in core-collapse supernovae.
Not only have scientists now seen how this happens in detail, the measurements are allowing us to better understand the production and abundances of mysterious isotopes called p-nuclei.
On the most basic level, stars can be thought of as the element factories of the Universe. Until stars were born and started smashing together nuclei in their cores, the Universe was a soup of mostly hydrogen and helium. This stellar nuclear fusion started infusing the cosmos with heavier elements, from carbon all the way up to iron for the most massive stars.
This is where core fusion hits a snag. The heat and energy required to produce iron via fusion exceeds the energy the process generates, causing the core temperature to drop, which in turn results in the star dying in a spectacular kaboom – the supernova.
This is where physicists think even heavier elements are born. The explosion is so energetic that atoms, colliding together with force, can capture components from each other. It doesn't have to be a supernova (heavy elements have been detected forming in a collision between two neutron stars) but the principle is the same. Colossal cosmic splodo boom = sufficient energy to forge elements.
Then there are the p-nuclei. These 30 or so naturally occurring isotopes of heavy elements constitute around 1 percent of the heavy elements observed in our Solar System, and their formation is a mystery.
Isotopes are forms of the same element that vary by atomic mass, usually because of a varying number of neutrons in the nucleus, while the number of protons stays the same. P-nuclei are isotopes that are neutron-deficient, but proton-rich; because they are so scarce, they are difficult to observe, which has resulted in some difficulty working out how they are forged.
The currently favored model is the gamma process, in which atoms capture loose protons during an energetic event. Since a chemical element is defined by the number of protons, this process would transform the element into the next one along in the periodic table, resulting in a neutron-poor isotope.
part 1
Tap water produces a natural protective shield against harmful microplastics, which can help prevent household products such as plastic kettles from releasing them. That's according to a team of scientists.
The research, published in the Chemical Engineering Journal, reveals that tap water contains trace elements and minerals, which prevent plastics from degrading in the water and releasing microplastics. Microplastics can carry a range of contaminants such as trace metals and some potentially harmful organic chemicals.
Previous studies investigating microplastics release have used forms of pure water, which only exist in laboratories and do not specifically take into account the ions and impurities found in tap water.
It is well known that plastics can degrade and release microplastics, which can get into the environment and be consumed by humans. This research shows that many items such as plastic kettles, which are repeatedly used with tap water, can develop over time a protective skin that prevents the release of microplastics entirely.
Because tap water is not 100% pure H2O—since it contains trace elements and minerals, what researchers now showed is that if you include these trace elements and minerals the degradation of plastics in tap water is completely different. Rather than the plastics falling apart, the minerals coat the plastic and prevent any kind of degradation and so the product becomes microplastic-free. For example, that dark brown color in your kettle is a good thing. It is copper oxide that forms from copper minerals in your tap water, which in turn comes from the copper pipes in your house—all these combine to give a perfect protection to the kettle.
This discovery is important because we have learned that these types of protective skins can be manufactured in the laboratory and directly applied to the plastic without having to wait for it to build up naturally.
Yunhong Shi et al, Real-world natural passivation phenomena can limit microplastic generation in water, Chemical Engineering Journal (2021). DOI: 10.1016/j.cej.2021.132466
https://phys.org/news/2021-10-scientists-shield-microplastics.html?...
Findings published this week reveal new insights into the role of fat cells in cognitive decline and neurodegeneration, according to a study that involves the oxidant amplification loop.
The research, published in iScience, shows that fat cells control the systemic response to brain function, causing impairment in memory and cognition in mice. The activation of Na,K-ATPase oxidant amplification loop affects the expression of important protein markers in fat cells as well as in the hippocampus, which can worsen brain function and lead to neurodegeneration. Targeting the fat cells to antagonize Na,K-ATPase may improve these outcomes.
Inducing oxidative stress through western diet increased production of inflammatory cytokines confined to adipocytes as well as altered protein markers of memory and cognition in the hippocampus.
Western diet induces oxidant stress and adipocyte alteration through Na,K-ATPase signaling which causes systemic inflammation and affects behavioral and brain biochemical changes.
Komal Sodhi et al, Role of Adipocyte Na,K-ATPase Oxidant Amplification Loop in Cognitive Decline and Neurodegeneration, iScience (2021). DOI: 10.1016/j.isci.2021.103262
https://medicalxpress.com/news/2021-10-fat-cells-central-role-cogni...
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!