SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 13 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

Vaccine woes

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 13 hours ago. 14 Replies

Recent measles outbreak in the California state of the US ( now spread to other states too) tells an interesting story.Vaccines are not responsible for the woes people face but because of rejection…Continue

Your Biological Age Can Be Different From Your Actual (Chronological)Age!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 13 hours ago. 15 Replies

Recently I have seen an old lady teasing an young girl who became breathless after climbing up a few steps.  "Look I am 78. But still I can climb steps with ease. I can go anywhere I want without any…Continue

Plastic 'death traps'!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 14 hours ago. 1 Reply

A few days back, when I was looking out from my balcony, I found a bird caught in the  plastic wire net used to cover a balcony opposite to my apartment building. I immediately alerted the watchman…Continue

Science explains why some interesting things happen in nature -5

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 15 hours ago. 2 Replies

This scientific Nature never ceases to amaze us. When we understand why something happens through science, the wonder gets enhanced. I have already done four parts of scientific explanations of…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on August 17, 2021 at 10:14am

Fighting fungal infections with smart nanotech

Newly engineered nanoparticles the size of coronavirus  developed by scientists are punching well above their weight when it comes to treating drug-resistant fungal infections.

They have  a remarkable ability to battle one of the most invasive and notoriously resistant fungal infections—Candida albicans. Micelles are made of lipid molecules that arrange themselves in a spherical form in aqueous solutions. They both attract and repel liquids, making them particularly well suited for drug delivery.

Candida albicans is an opportunistic pathogenic yeast that is extremely dangerous to people with compromised immune systems, particularly those in a hospital setting. Found on many surfaces, Candida albicans is notorious for its resilience to anti-fungal medicines. It is the most prevalent cause of fungal infections worldwide and can cause serious infections that can affect the blood, heart, brain, eyes, bones, and other parts of the body.

The new polymer-based micelles could revolutionize current anti-fungal medicines.

Fungal biofilms are surface-loving microbials that thrive on implanted devices such as catheters, prostheses and heart valves, making the presence of these devices a major risk factor for infection.

"In places like India—which has nearly 40,000 new COVID-19 infections every day—hospital resources are severely stretched, leaving healthcare workers are not only battling COVID-19, but also dealing with complacency and fatigue.

"The unfortunate result is that infection control practices have deteriorated, putting patients on  at greater risk of developing bacterial or fungal infections.

"As fungal biofilms tend to seed recurrent infections, finding ways to break and beat the infection cycle is critical, especially now. 

smart micelles that have the ability to break down single and multi-species biofilms to significantly inhibit the growth of Candida albicans, one of the most virulent fungal species.

Researchers estimate that the new micelles could improve the efficacy of anti-fungal medicines by 100-fold, potentially saving the lives of millions of people worldwide. 

These micelles have a unique ability to solubilize and entrap a range of important antifungal drugs to significantly improve their performance and efficacy."

This is the first time that polymer-based micelles have been created with intrinsic capabilities to prevent fungal biofilm formation.

The new micelles will remove up to 70 percent of infection, this could be a real game changer for treating fungal diseases.

 Yassamin N. Albayaty et al, Polymeric micelles with anti-virulence activity against Candida albicans in a single- and dual-species biofilm, Drug Delivery and Translational Research (2021). DOI: 10.1007/s13346-021-00943-4

Yassamin N. Albayaty et al, pH-Responsive copolymer micelles to enhance itraconazole efficacy against Candida albicans biofilms, Journal of Materials Chemistry B (2020). DOI: 10.1039/C9TB02586C

https://phys.org/news/2021-08-fungal-infections-giant-smart-nanotec...

Comment by Dr. Krishna Kumari Challa on August 17, 2021 at 9:58am

Pollinators: First global risk index for species declines and effects on humanity

Disappearing habitats and use of pesticides are driving the loss of pollinator species around the world, posing a threat to "ecosystem services" that provide food and wellbeing to many millions—particularly in the Global South—as well as billions of dollars in crop productivity.

This is according to an international panel of experts, led by the University of Cambridge, who used available evidence to create the first planetary risk index of the causes and effects of dramatic pollinator declines in six global regions.

The bees, butterflies, wasps, beetles, bats, flies and hummingbirds that distribute pollen, vital for the reproduction of over 75% of  food crops and flowering plants—including coffee, rapeseed and most fruits—are visibly diminishing the world over, yet little is known of the consequences for human populations.

What happens to pollinators could have huge knock-on effects for humanity. These small creatures play central roles in the world's ecosystems, including many that humans and other animals rely on for nutrition. If they go, we may be in serious trouble.

The top three global causes of pollinator loss are habitat destruction, followed by land management—primarily the grazing, fertilizers and crop monoculture of farming—and then widespread pesticide use, according to the study. The effect of climate change comes in at number four, although data are limited.

Perhaps the biggest direct risk to humans across all regions is "crop pollination deficit": falls in quantity and quality of food and biofuel crops. Experts ranked the risk of crop yield "instability" as serious or high across two-thirds of the planet—from Africa to Latin America—where many rely directly on pollinated crops through small-holder farming.

Increasingly unusual climatic phenomena, such as extreme rainfall and temperature, are already affecting crops. Pollinator loss adds further instability.

A global-scale expert assessment of drivers and risks associated with pollinator decline, Nature Ecology & Evolution (2021). DOI: 10.1038/s41559-021-01534-9 , www.nature.com/articles/s41559-021-01534-9

https://phys.org/news/2021-08-pollinators-global-index-species-decl...

Comment by Dr. Krishna Kumari Challa on August 16, 2021 at 10:30am

Deforestation Can Cause Rapid Evolutionary Changes in Insects

People in New Zealand have cut down so many trees, some native insects are losing their wings.

In the space of 750 years, humans have changed the natural landscape of the country's South Island so much, scientists say it's causing rapid evolutionary changes among certain species.

With no more alpine forest to break the strong mountaintop winds, at least one type of insect is already transitioning out of the flight industry.

Zelandoperla fenestrata is a stonefly with two distinct phenotypes: one with wings, capable of flight; and one with stunted wings or even none, described as flightless.

The flightless type of stonefly is usually found at higher altitudes, where trees are scarce and strong winds can therefore easily blow a flying insect out into the abyss. Meanwhile, the flight-capable flies are typically sheltered in alpine forests, where insects need to explore the full extent of the habitat.

However, in regions where alpine forests have been cut down, researchers have noticed something intriguing. The insects at this elevation, which should usually be able to fly, can't do so.

It appears that human-caused deforestation has indirectly deprived these insects of their ability to fly, and we did so in a very short span of time.

In addition to the local shifts inferred here, it is likely that widespread deforestation has increased the proportion of flightless lineages across large areas of southern New Zealand.

The researchers worry  that without wings, stoneflies won't be able to search for mates in a larger territorial range, thus increasing genetic diversity. This could possibly impact the species' health in the long run, as well as the insects' risk of extinction.

https://royalsocietypublishing.org/doi/10.1098/rsbl.2021.0069

Comment by Dr. Krishna Kumari Challa on August 15, 2021 at 7:58am

Can "squirrelly" skills be built into robots?

Comment by Dr. Krishna Kumari Challa on August 15, 2021 at 7:38am

Our Metabolism Changes With Age, But It's Not When You Think

Metabolism – the rate that we burn calories to keep our bodies running – changes as we age.

A new study looking at metabolism across the generations has come up with some rather surprising findings.

The researchers were able to pull in a huge amount of data from 6,421 people across 29 countries and with an age range of 8 days old to 95 years old. By using isotopes placed in drinking water and then tracked through urine, researchers worked out a daily energy expenditure figure for each participant.

Contrary to popular belief, pound-for-pound our metabolic rate peaks when we're infants. So, when we're teenagers, we're only burning calories at a slighter faster rate than when we're middle-aged.

The thickening waistlines associated with middle age might not all be down to a slow metabolic rate, in other words.

As young people, our metabolisms seem to slow down by about 3 percent until our 20s, when they level off, the data showed – there's no real spurt over puberty. During our 20s through to our 50s, that's when our metabolic rate seems to be the most stable.

Once we hit our 60s, researchers found that our metabolisms seem to slow down by about 0.7 percent a year. By the time a person reaches their 90s, on average they need 26 percent fewer calories for energy per day than someone who's middle-aged – not just because of less muscle mass, but because their cells are slowing down.

But it's during the first 12 months of life that energy needs really shift. A 1-year-old burns calories around 50 percent faster for their body size than an adult. Even controlling for rapid increases in weight, energy use is "rocketing" in these early months, according to researchers.

The findings could be useful is in tailoring health treatments to specific people and specific age ranges, taking shifts in metabolism into account.

https://science.sciencemag.org/content/373/6556/808

Comment by Dr. Krishna Kumari Challa on August 14, 2021 at 9:38am

Scientists show how blocking opioid receptors in specific neurons can restore breathing during an overdose

Opioid overdose deaths are caused by disrupted breathing, but the actual mechanism by which these drugs suppress respiration was not understood. Now, a new study by  scientists has identified a group of neurons in the brainstem that plays a key role in this process.

The new findings show how triggering specific receptors in these neurons causes opioid-induced respiratory depression, or OIRD, the disrupted breathing that causes overdose deaths. It also shows how blocking these receptors can cause OIRD to be reversed.

Opioids work by binding to proteins on nerve cells (neurons) called opioid receptors and subsequently inhibiting their activity. Currently, naloxone is the only medication known to block the effects of opioids and reverse an overdose. But naloxone has limitations, including a short duration that requires it to be administered multiple times. It also works systemically, blocking opioid receptors throughout the entire body, including those that control pain.

In the new study, the researchers identified a group of neurons that express a certain type of opioid receptor (the mu opoid receptor) and are located in the brainstem breathing modulation center; they then characterized these neurons' role in OIRD.

They found that mice that were genetically engineered to lack  in these neurons didn't have their breathing disrupted when exposed to morphine, as mice in the  did. The researchers also found that, without introducing opioids, stimulating these receptors in control mice caused symptoms of OIRD.

The team then looked at ways to reverse the process by treating the overdosed mice with  targeted to other  on the same neurons, which play an opposite role as the  receptor (activating rather than inhibiting them).

Shijia Liu et al, Neural basis of opioid-induced respiratory depression and its rescue, Proceedings of the National Academy of Sciences (2021). DOI: 10.1073/pnas.2022134118

https://medicalxpress.com/news/2021-08-scientists-blocking-opioid-r...

Comment by Dr. Krishna Kumari Challa on August 13, 2021 at 7:42am

Antibodies Stop Sperm in Their Tracks

Engineered antibodies trap and immobilize human sperm in the reproductive tract of female sheep, paving the way for possible use as a nonhormonal contraceptive in people.

Currently, most available birth control options are barrier methods or rely on hormones to prevent fertilization of an egg—both of which have drawbacks, such as discomfort or side effects, that make them less than ideal for some people. Enter antisperm antibodies, described in a study published today (August 11) in Science Translational MedicineResearchers generated antibodies that recognize an antigen unique to human sperm. When delivered topically to the reproductive tracts of sheep, the antibodies successfully bound and trapped more than 99.9 percent of introduced human sperm. Some of the authors have spun out a company, Mucommune, in order to continue the development of contraceptives based on these antibodies.

Previous work showed that some women’s bodies naturally produce antibodies to sperm that can lead to a type of immunological infertility. Lai’s group used the antigen binding fragment from one of these antibodies, which recognizes a sperm-specific antigen known as CD52g, in a study published in 2020, where they engineered an IgG antibody with four of the antigen-binding fragments and showed that it and the original, naturally-occurring IgG antibody with two antigen binding domains trapped sperm in vitro. 

--

In the new study, Lai and colleagues added multiple antigen-binding fragments—6, 8, or 10—to an IgG antibody and then introduced expression plasmids into human embryonic kidney cells so the cells would produce them and researchers could isolate them. The team tested the antibodies’ ability to immobilize sperm in vitro, where the antibodies with extra antigen-binding fragments trapped sperm at least 10 times more effectively than the original IgG antibody with just two antigen-binding fragments. 

To explore the effects of the antibodies in vivo, the researchers introduced the original IgG antibody, one with 6 or 10 antigen-binding fragments, or saline into the vaginas of female sheep, which are similar to the human female reproductive tract, and then simulated intercourse and delivered a human semen sample. Two minutes later, they retrieved the sample and analyzed sperm movement. At a high dose (333 micrograms of antibody), all three antibodies tamped down nearly all sperm motility, and at a low dose (33.3 micrograms), both modified antibodies, but not the original IgG, trapped more than 90 percent of sperm.

https://stm.sciencemag.org/content/13/606/eabd5219

https://www.the-scientist.com/news-opinion/antibodies-stop-sperm-in...

Comment by Dr. Krishna Kumari Challa on August 13, 2021 at 7:10am

Newtonian physics for babies

Comment by Dr. Krishna Kumari Challa on August 13, 2021 at 6:34am

Combining classical and quantum systems to meet supercomputing demands

Quantum entanglement is one of the most fundamental and intriguing phenomena in nature. Recent research on entanglement has proven to be a valuable resource for quantum communication and information processing. Now, scientists from Japan have discovered a stable quantum entangled state of two protons on a silicon surface, opening doors to an organic union of classical and quantum computing platforms and potentially strengthening the future of quantum technology.

One of the most interesting  in  is "quantum ." This phenomenon describes how certain  are inextricably linked, such that their states can only be described with reference to each other. This particle interaction also forms the basis of quantum computing. And this is why, in recent years, physicists have looked for techniques to generate entanglement. However, these techniques confront a number of engineering hurdles, including limitations in creating large number of "qubits" (quantum bits, the basic unit of quantum information), the need to maintain extremely low temperatures (<1 K), and the use of ultrapure materials. Surfaces or interfaces are crucial in the formation of quantum entanglement. Unfortunately, electrons confined to surfaces are prone to "decoherence," a condition in which there is no defined phase relationship between the two distinct states. Thus, to obtain stable, coherent qubits, the spin states of surface atoms (or equivalently, protons) must be determined.

Recently, a team of scientists  recognized the need for stable qubits. By looking at the surface spin states, the scientists discovered an entangled pair of protons on the surface of a silicon nanocrystal.

Proton entanglement has been previously observed in molecular hydrogen and plays an important role in a variety of scientific disciplines. However, the entangled state was found in gas or liquid phases only. Now, researchers have detected quantum entanglement on a solid surface, which can lay the groundwork for future quantum technologies.

The scientists studied the spin states using a technique known as "inelastic neutron scattering spectroscopy" to determine the nature of surface vibrations. By modeling these surface atoms as "harmonic oscillators," they showed anti-symmetry of protons. Since the protons were identical (or indistinguishable), the oscillator model restricted their possible spin states, resulting in strong entanglement. Compared to the proton entanglement in molecular hydrogen, the entanglement harbored a massive energy difference between its states, ensuring its longevity and stability. Additionally, the scientists theoretically demonstrated a cascade transition of terahertz entangled photon pairs using the proton entanglement.

Takahiro Matsumoto et al, Quantum proton entanglement on a nanocrystalline silicon surface, Physical Review B (2021). DOI: 10.1103/PhysRevB.103.245401

https://phys.org/news/2021-08-worlds-combining-classical-quantum-su...

Comment by Dr. Krishna Kumari Challa on August 13, 2021 at 6:21am

Dendrimers: The tiny tentacles shown to evade our immune response

Tiny synthetic particles known as dendrimers avoid detection by our immune system and could help develop a new way to deliver drugs into the body without triggering a reaction.

The  is a chemically-created molecule with tentacles branching out in a highly-symmetrical structure around a central core. The research describes how dendrimer tentacles arranged incredibly closely to each other—less than one nanometer apart—avoided detection by the complement system, part of our .

Our immune system is equipped with many tools to recognize and eliminate invaders. For example, our blood contains sensors belonging to a family of defense system known as the "complement system," which recognizes unique patterns expressed by invaders such as bacteria and viruses. Binding of these sensors to pathogens alarms the immune system and triggers an immune response. These sensors are termed "complement pattern-recognition (CPR)" molecules.

CPR can sense surface patterns that are regularly repeated so close to each other, for instance in 2–15 nanometer ranges—a distance, which is at least 5000 times thinner than the thickness of a typical sheet of paper.

The international team discovered however, that the CPR could not sense patterns repeated closer to each other, for instance, at 1 nanometer or less.

At a nanoscale level, the team grew tiny particles known as dendrimers which are shaped like trees with many branches—or tiny tentacles. The number of tentacles exponentially increases with dendrimer size and the tentacles are positioned less than 1 nanometer from each other. The ends of tentacles are where regular patterns appear. Depending on chemical structure of these patterns, they found that these dendrimers could escape detection by the CPR radar.

Dendrimers offer us the ability to deliver drugs to diseased sites where inflammation is a major problem such as in conditions like atherosclerosis, cancer, macular degeneration  and rheumatoid arthritis.

Lin-Ping Wu et al, Dendrimer end-terminal motif-dependent evasion of human complement and complement activation through IgM hitchhiking, Nature Communications (2021). DOI: 10.1038/s41467-021-24960-6

https://phys.org/news/2021-08-dendrimers-tiny-tentacles-shown-evade...

 

Members (22)

 
 
 

Badge

Loading…

© 2025   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service