Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 13 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 13 hours ago. 14 Replies 0 Likes
Recent measles outbreak in the California state of the US ( now spread to other states too) tells an interesting story.Vaccines are not responsible for the woes people face but because of rejection…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 13 hours ago. 15 Replies 0 Likes
Recently I have seen an old lady teasing an young girl who became breathless after climbing up a few steps. "Look I am 78. But still I can climb steps with ease. I can go anywhere I want without any…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 14 hours ago. 1 Reply 0 Likes
A few days back, when I was looking out from my balcony, I found a bird caught in the plastic wire net used to cover a balcony opposite to my apartment building. I immediately alerted the watchman…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 15 hours ago. 2 Replies 0 Likes
This scientific Nature never ceases to amaze us. When we understand why something happens through science, the wonder gets enhanced. I have already done four parts of scientific explanations of…Continue
Comment
Do you feel the heat? To a thermal camera, which measures infrared radiation, the heat that we can feel is visible, like the heat of a traveler in an airport with a fever or the cold of a leaky window or door in the winter.
Researchers now report a theoretical way of mimicking thermal objects or making objects invisible to thermal measurements.
The method allows for fine-tuning of heat transfer even in situations where the temperature changes in time, the researchers say. One application could be to isolate a part that generates heat in a circuit (say, a power supply) to keep it from interfering with heat sensitive parts (say, a thermal camera). Another application could be in industrial processes that require accurate temperature control in both time and space, for example controlling the cooling of a material so that it crystallizes in a particular manner.
Just as our eyes see objects if they emit or reflect light, a thermal camera can see an object if it emits or reflects infrared radiation. In mathematical terms, an object could become invisible to a thermal camera if heat sources placed around it could mimic heat transfer as if the object wasn't there.
The novelty in the team's approach is that they use heat pumps rather than specially crafted materials to hide the objects. A simple household example of a heat pump is a refrigerator: to cool groceries it pumps heat from the interior to the exterior. Using heat pumps is much more flexible than using carefully crafted materials. So at least from the perspective of thermal measurements they can make an apple appear as an orange.
The researchers carried out the mathematical work needed to show that, with a ring of heat pumps around an object, it's possible to thermally hide an object or mimic the heat signature of a different object.
The work remains theoretical
Active Thermal Cloaking and Mimicking, Proceedings of the Royal Society A (2021). royalsocietypublishing.org/doi … .1098/rspa.2020.0941
https://phys.org/news/2021-05-thermally-cloak.html?utm_source=nwlet...
Some COVID-19 patients in India have developed a rare and potentially fatal fungal infection called mucormycosis, also known as "black fungus," according to news reports.
Mucormycosis is caused by a group of molds called mucormycetes, which grow in soil and decaying organic matter, such as rotting leaves and wood. It is ubiquitous and found in soil and air and even in the nose and mucus of healthy people.
The mold can enter the body through cuts and other abrasions in the skin, or the infection can take hold in the sinuses or lungs after people breathe in the fungal spores. Once inside the body, the fungus can sometimes spread through the bloodstream and affect other organs, such as the brain, eyes, spleen and heart.
Most commonly, mucormycosis strikes those with weakened immune systems, including those with diabetes and those taking medicines that suppress immune activity. Now, an increasing number of COVID-19 patients in India appear to be contracting the infection.
Cases are appearing throughout India now.
The rise in cases may be connected to the use of steroids in hospitalized COVID-19 patients, since the drugs suppress the immune system.
And those with diabetes start out at increased risk for the infection, even before taking steroids.
"Diabetes lowers the body's immune defenses, coronavirus exacerbates it, and then steroids which help fight COVID-19 act like fuel to the fire. In addition, many families have had to treat relatives for COVID-19 at home, meaning people may become exposed to the mold after receiving medicine or oxygen therapy in less-than-sterile conditions.
https://www.livescience.com/black-fungus-infection-coronavirus-indi...
This is video of a SARS-CoV-2 spike protein under siege. The little blobs buzzing around it are called lectins, and they could be the secret weapon in a new defence against COVID-19, new research has found.
--
Most COVID-19 drugs currently in clinical trials are designed to block receptor sites on our cells -- the little doors on the surface of our cells that the SARS-CoV-2 spike protein breaches to gain access. But this treatment would be different, targeting the spike protein itself. The protein hides from our immune system by covering itself with sugar molecules called glycans. These glycans are a disguise that helps the virus get in the door. What if, instead of trying to block the door, you gummed up the key instead?
Researchers developed the largest lectin library in the world to find two lectins that are particularly good at binding to glycans on the SARS-CoV-2 spike protein. These lectins are the gum on the key, and could be the starting point for a lectin-based drug to combat COVID-19. The best part? The glycan sites that the spike protein uses for its disguise show up in all circulating variants of the SARS-CoV-2 virus.
Not only have the researchers learned how these lectins bind to the spike protein, they've recorded it happening.
https://www.biorxiv.org/content/10.11...
Researchers at Chalmers University of Technology, Sweden, have developed a new material that prevents infections in wounds, a specially designed hydrogel that works against all types of bacteria, including antibiotic-resistant strains. The new material offers great hope for combating a growing global problem.
After testing the new hydrogel on different types of bacteria, researchers observed a high level of effectiveness, including against those which have become resistant to antibiotics.
The active substance in the new bactericidal material consists of antimicrobial peptides, small proteins found naturally in the immune system.
"With these types of peptides, there is a very low risk for bacteria to develop resistance against them, since they only affect the outermost membrane of the bacteria. That is perhaps the foremost reason why they are so interesting.
Researchers have long tried to find ways to use these peptides in medical applications, but so far without much success. The problem is that they break down quickly when they come into contact with bodily fluids such as blood. The current study describes how the researchers managed to overcome the problem through the development of a nanostructured hydrogel, into which the peptides are permanently bound, creating a protective environment.
Saba Atefyekta et al, Antimicrobial Peptide-Functionalized Mesoporous Hydrogels, ACS Biomaterials Science & Engineering (2021). DOI: 10.1021/acsbiomaterials.1c00029
https://phys.org/news/2021-05-material-wounds-resistant-bacteria.ht...
Researchers have confirmed the existence of magnetic plasma waves, known as Alfvén waves, in the Sun's photosphere. The study, published in Nature Astronomy, provides new insights into these fascinating waves that were first discovered by the Nobel Prize winning scientist Hannes Alfvén in 1947.
The vast potential of these waves resides in their ability to transport energy and information over very large distances due to their purely magnetic nature. The direct discovery of these waves in the solar photosphere, the lowest layer of the solar atmosphere, is the first step towards exploiting the properties of these magnetic waves.
The ability for Alfvén waves to carry energy is also of interest for solar and plasma-astrophysics as it could help explain the extreme heating of the solar atmosphere—a mystery that has been unsolved for over a century.
Alfvén waves form when charged particles (ions) oscillate in response to interactions between magnetic fields and electrical currents.
Within the solar atmosphere bundles of magnetic fields, known as solar magnetic flux tubes, can form. Alfvén waves are though to manifest in one of two forms in solar magnetic flux tubes; either axisymmetric torsional pertubations (where symmetric oscillations occur around the flux tube axis) or anti-symmetric torsional pertubations (where oscillations occur as two swirls rotating in opposite directions in the flux tube).
Despite previous claims, torsional Alfvén waves have never been directly identified in the solar photosphere, even in their simplest form of axisymmetric oscillations of magnetic flux tubes.
In this study, the researchers used high resolution observations of the solar atmosphere, made by the European Space Agency's imager IBIS, to prove the existence of anti-symmetric torsional waves first predicted almost 50 years ago.
They also found that these waves could be used to extract vast amounts of energy from the solar photosphere, confirming the potential of these waves for a wide range of research areas and industrial applications.
Marco Stangalini et al. Torsional oscillations within a magnetic pore in the solar photosphere, Nature Astronomy (2021). DOI: 10.1038/s41550-021-01354-8
https://phys.org/news/2021-05-scientists-magnetic-action-sun-photos...
A new approach to tackling viruses by targeting the 'control center' in viral RNA could lead to broad spectrum anti-viral drugs and provide a first line of defense against future pandemics, according to new research.
In a new study, published in Angewandte Chemie, researchers have shown how this approach could be effective against the SARS-CoV-2 virus responsible for the COVID-19 pandemic. Earlier modeling and in vitro analysis by the team and published in Chemical Science has also shown effectiveness against the HIV virus.
The technique proposed by the team uses cylindrically-shaped molecules which can block the function of a particular section at one end of the RNA strand. These RNA sections, known as untranslated RNA, are essential for regulating the replication of the virus.
Untranslated RNA contain junction points and bulges—essentially small holes in the structure– which are normally recognized by proteins or other pieces of RNA—events that are critical for viral replication to occur. The cylindrical molecules are attracted to these holes, and once they slide into them, the RNA closes around them, forming a precise fit, which consequently will interfere with the virus's ability to replicate.
Lazaros Melidis et al. Supramolecular cylinders target bulge structures in the 5' UTR of the RNA genome of SARS‐CoV‐2 and inhibit viral replication, Angewandte Chemie (2021). DOI: 10.1002/ange.202104179
Lazaros Melidis et al. Targeting structural features of viral genomes with a nano-sized supramolecular drug, Chemical Science (2021). DOI: 10.1039/D1SC00933H
https://phys.org/news/2021-05-viral-rna-basis-next-gen-broad.html?u...
Induced bank filtration is a key and well-established approach to provide drinking water supply to populated areas located along rivers or lakes and with limited access to groundwater resources. It is employed in several countries worldwide, with notable examples in Europe, the United States, and parts of Africa. Contamination of surface waters poses a serious threat to attaining drinking water standards. In this context, human pathogenic microorganisms such as some viruses and bacteria, originating from the discharge of wastewater treatment plants, form a major contaminant group. A detailed study at an induced bank filtration site along the Rhine river in Germany has now linked transport of bacteria to seasonal dynamics. Key results of the study show that floods should be considered as particular threats, because they can reduce the purification capacity of bank filtration, thus leading to an increase in the concentrations of bacteria in groundwater. Changes in properties of the riverbed sediments over the course of a year can markedly influence the purification capacity of bank filtration and these dynamics may need to be considered in risk assessment practices.
--
Diamonds are sometimes described as messengers from the deep earth; scientists study them closely for insights into the otherwise inaccessible depths from which they come. But the messages are often hard to read. Now, a team has come up with a way to solve two longstanding puzzles: the ages of individual fluid-bearing diamonds, and the chemistry of their parent material. The research has allowed them to sketch out geologic events going back more than a billion years—a potential breakthrough not only in the study of diamonds, but of planetary evolution.
--
Researchers from the University of Tsukuba have sent mice into space to explore effects of spaceflight and reduced gravity on muscle atrophy, or wasting, at the molecular level.
A chemical that the NSW government has recently partially banned in firefighting has been found in the pups of endangered Australian sea lions and in Australian fur seals.
The new research—part of a long-term health study of seals and sea lions in Australia—identified the chemicals in animals at multiple colonies in Victoria and South Australia from 2017 to 2020.
As well as in pups, the chemicals (Per- and polyfluoroalkyl substances - 'PFAS') were detected in juvenile animals and in an adult male. There was also evidence of transfer of the chemicals from mothers to newborns.
PFAS have been reported to cause cancer, reproductive and developmental defects, endocrine disruption and can compromise immune systems. Exposure can occur through many sources including through contaminated air, soil and water, and common household products containing PFAS. In addition to being used in firefighting foam, they are frequently found in stain repellents, polishes, paints and coatings.
The researchers think the seals and sea lions ingested the chemicals through their fish, crustacean, octopus and squid diets.
Shannon Taylor et al, Per and polyfluoroalkyl substances (PFAS) at high concentrations in neonatal Australian pinnipeds, Science of The Total Environment (2021). DOI: 10.1016/j.scitotenv.2021.147446
https://phys.org/news/2021-05-firefighting-chemical-sea-lion-fur.ht...
Bamboo cricket bats are stronger, offer a better 'sweet spot' and deliver more energy to the ball than those made from traditional willow, tests conducted by the University of Cambridge show. Bamboo could, the study argues, help cricket to expand faster in poorer parts of the world and make the sport more environmentally friendly.
compared the performance of specially made prototype laminated bamboo cricket bats, the first of their kind, with that of typical willow bats. Their investigations included microscopic analysis, video capture technology, computer modelling, compression testing, measuring how knocking-in improved surface hardness, and testing for vibrations.
The study, published today in The Journal of Sports Engineering and Technology, shows that bamboo is significantly stronger—with a strain at failure more than three times greater—than willow and able to hold much higher loads, meaning that bats made with bamboo could be thinner while remaining as strong as willow. This would help batsmen as lighter blades can be swung faster to transfer more energy to the ball. The researchers also found that bamboo is 22% stiffer than willow which also increases the speed at which the ball leaves the bat.
Ben Tinkler-Davies et al, Replacing willow with bamboo in cricket bats, Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology (2021). DOI: 10.1177/17543371211016592
--
During manufacture, the surface of cricket bats is compressed to create a hardened layer. When the team compared the effect of this 'knock-in' process on both materials, they found that after 5 hours bamboo's surface hardness had increased to twice that of pressed willow.
Perhaps most excitingly, they found that the sweet-spot on their prototype bamboo blade performed 19% better than that on a traditional willow bat. This sweet-spot was about 20 mm wide and 40 mm long, significantly larger than on a typical willow bat, and better still, was positioned closer to the toe (12.5 cm from the toe at its sweetest point).
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!