SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 21 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

Study reveals brain-cell circuitry that could underlie how animals see wavelengths of light

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 23 hours ago. 1 Reply

Perceiving something—anything—in your surroundings is to become aware of what your senses are detecting. Now, neuroscientists have identified, for the first time, brain-cell circuitry in fruit flies…Continue

Antidote for antidote side effects? Don't enter this vicious cycle!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply

Q: Is there any company trying to make antidote to get rid of corona vaccine side effects?Krishna: Till date, no.However, let me explain to you why we can manage vaccine side effects in majority of…Continue

You can trust Genuine Science with confidence!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply

Q: Is it scientific to try and alter the result of an experiment to better meet your belief of what the result should be?Krishna: NO!Genuine Scientists never do such things. Because they think that…Continue

Ultrasound Mimicry used as a weapon to fight off bat attacks by tiger beetles

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 1 Reply

Bats, as the main predator of night-flying insects, create a selective pressure that has led many of their prey to evolve an early warning system of sorts: ears uniquely tuned to high-frequency bat…Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on December 27, 2021 at 7:14am

Parasitic worms in dogs, cats may jump into people

Parasitic worms that infect companion animals such as dogs and cats are more likely to make the leap into humans than other worm species, according to new research.

The study also identified three species of worms that don't currently infect people but have a more than 70% chance of crossing into humans in the future.

The close relationships that we have with pets is the predominant reason why people might become infected with new species of parasitic worms.

Parasitic worms, or helminths, are estimated to infect 1.5 billion people globally, according to the World Health Organization. Many of these parasites infect humans, causing a number of serious illnesses, including schistosomiasis and filariasis.

Published in The Royal Society journal Philosophical Transactions B, the study focused on 737 parasitic worm species that predominantly infect wild and domesticated mammals. Of these, 137 are known to be able to infect people.

The researchers categorized the worm species' traits and built a machine learning model to determine which characteristics were most commonly associated with transmission into humans.

They found that worms that can infect companion animals or fish are more likely to cause human infection than worms that infect other animal species. Geographically widespread parasites were also more likely to make the jump from animals into people.

The analyses showed that three worm species not currently known to infect people have traits that make them very likely to be able to do so: Paramphistomum cervi, a flatworm mostly found in livestock and some wild animals; Schistocephalus solidus, a fish-based tapeworm that also infects birds and rodents; and Strongyloides papillosus, a pinworm found largely in livestock.

The study marks the first time these species have been identified as likely to infect humans, suggesting they are candidates for surveillance and further study.

It's relatively easy for dogs and cats to become infected with parasitic worms, particularly if they're allowed to wander during the day.

Dogs and cats aren't the only transmission route, though.

Fish also host a variety of parasitic worms. People can easily become infected by eating raw, undercooked or improperly prepared fish. The roundworm that causes herring worm disease, for example, infects thousands of people each year, largely in areas where eating raw fish is common, like Japan and parts of Europe.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8450625/

https://researchnews.cc/news/10746/Parasitic-worms-in-dogs--cats-ma...

Comment by Dr. Krishna Kumari Challa on December 26, 2021 at 1:38pm

Real-space subfemtosecond imaging of quantum electronic coherences in molecules

" It has been a long-time dream of scientists to capture image of electron moving inside the atoms. For this scientist have been using two techniques to track the movement of an electron inside a molecule. One of the techniques of attosecond science enables to generate and trace the consequences of this motion in real time, but not in real space. On the other hand, another technique Scanning tunneling microscopy, can locally probe the valence electron density in molecules, but cannot alone provide dynamical information at this ultrafast timescale.

Now by combining scanning tunnelling microscopy and attosecond technologies, real-space and -time imaging of electrons became possible first time.

These results are a major boon for the scientific research world because it will facilitate understanding of chemical reactions. With the help of these understandings, scientists can gain new insights into the most elementary processes such as photosynthesis in plants and the biochemical processes on our retina which are also triggered by light. These experimental achievements can enable the manipulation of electron movements which will allow unprecedented control over chemical reactions and biological processes. The scientists have now come a huge step closer to achieving this goal."

Tracking electron motion in molecules is the key to understanding and controlling chemical transformations. Contemporary techniques in attosecond science are able to generate and trace the consequences of this motion in real time, but not in real space. Scanning tunnelling microscopy, on the other hand, can locally probe the valence electron density in molecules, but cannot alone provide dynamical information at this ultrafast timescale. Here researchers show that, by combining scanning tunnelling microscopy and attosecond technologies, quantum electronic coherences induced in molecules by <6-fs-long carrier-envelope-phase-stable near-infrared laser pulses can be directly visualized at ångström-scale spatial and subfemtosecond temporal resolutions. They demonstrate concurrent real-space and -time imaging of coherences involving the valence orbitals of perylenetetracarboxylic dianhydride molecules, and full control over the population of the involved orbitals. This approach opens the way to the unambiguous observation and manipulation of electron dynamics in complex molecular systems.

https://www.nature.com/articles/s41566-021-00929-1

Comment by Dr. Krishna Kumari Challa on December 26, 2021 at 11:20am

What makes an mRNA vaccine so effective against severe COVID-19?

The first two vaccines created with mRNA vaccine technology—the Pfizer/BioNTech and Moderna COVID-19 vaccines—are arguably two of the most effective COVID vaccines developed to date. In clinical trials, both were more than 90% effective at preventing symptomatic infection, easily surpassing the 50% threshold the Food and Drug Administration had set for COVID-19 vaccines to be considered for emergency use authorization.

While breakthrough infections have increased with the emergence of the delta and omicron variants, the vaccines remain quite effective at preventing hospitalizations and deaths. The success of the new technology has led scientists to try to figure out why mRNA vaccines are so effective and whether the protection they provide is likely to endure as new variants arise.

A new study from researchers at Washington University School of Medicine in St. Louis and St. Jude Children's Research Hospital shines light on the quality of the immune response triggered by mRNA vaccines. The study shows that the Pfizer vaccine strongly and persistently activates a kind of helper immune cell that assists antibody-producing cells in creating large amounts of increasingly powerful antibodies, and also drives the development of some kinds of immune memory. Known as T follicular helper cells, these cells last for up to six months after vaccination, helping the body crank out better and better antibodies. Once the helper cells decline, long-lived antibody-producing cells and memory B cells help to provide protection against severe disease and death, the researchers said.

Further, many of the T follicular helper cells are activated by a part of the virus that doesn't seem to pick up mutations, even in the highly mutated omicron variant. The findings, published online in the journal Cell, help explain why the Pfizer vaccine elicits such high levels of neutralizing antibodies and suggests that vaccination may help many people continue producing potent antibodies even as the virus changes.

The longer the T follicular helper cells provide help, the better the antibodies are and the more likely you are to have a good memory response. In this study, researchers found that these T follicular helper cell responses just keep going and going. And what's more, some of them are responding to one part of the virus's spike protein that has very little variation in it. With the variants, especially delta and now omicron, we've been seeing some breakthrough infections, but the vaccines have held up very nicely in terms of preventing severe disease and death. This strong T follicular helper response is part of the reason why the mRNA vaccines continue to be so protective.

  1. Philip A. Mudd, Anastasia A. Minervina, Mikhail V. Pogorelyy, Jackson S. Turner, Wooseob Kim, Elizaveta Kalaidina, Jan Petersen, Aaron J. Schmitz, Tingting Lei, Alem Haile, Allison M. Kirk, Robert C. Mettelman, Jeremy Chase Crawford, Thi H.O. Nguyen, Louise C. Rowntree, Elisa Rosati, Katherine A. Richards, Andrea J. Sant, Michael K. Klebert, Teresa Suessen, William D. Middleton, Joshua Wolf, Sharlene A. Teefey, Jane A. O’Halloran, Rachel M. Presti, Katherine Kedzierska, Jamie Rossjohn, Paul G. Thomas, Ali H. Ellebedy. SARS-CoV-2 mRNA vaccination elicits a robust and persistent T follicular helper cell response in humans. Cell, 2021; DOI: 10.1016/j.cell.2021.12.026

https://researchnews.cc/news/10732/What-makes-an-mRNA-vaccine-so-ef...

Comment by Dr. Krishna Kumari Challa on December 26, 2021 at 11:07am

Study shows robotic-assisted bladder removal reduces blood loss and enhances post-operative recovery

 Robotic-assisted radical cystectomy (RARC), the complete removal of the bladder with the use of surgical robots, has gained increasing acceptance worldwide. After the removal of the bladder, patients need to undergo a urinary diversion, such as the reconstruction of a “new bladder”. In the past, a urinary diversion had to be performed through an open approach, i.e. extracorporeal urinary diversion (ECUD). Recently, an intracorporeal urinary diversion (ICUD) approach has been introduced, and the whole procedure can be performed in a minimally invasive manner.

The Chinese University of Hong Kong’s Faculty of Medicine has led a...

https://www.med.cuhk.edu.hk/press-releases/study-led-by-cuhk-shows-...

https://researchnews.cc/news/10723/Study-shows-robotic-assisted-bla...

Comment by Dr. Krishna Kumari Challa on December 25, 2021 at 12:11pm

A Scent of Space

Comment by Dr. Krishna Kumari Challa on December 24, 2021 at 11:15am

Frog cells transform into tiny living robots

Comment by Dr. Krishna Kumari Challa on December 24, 2021 at 11:04am

A special microbe turns oil into gases all by itself

Microorganisms can convert oil into natural gas, i.e. methane. Until recently, it was thought that this conversion was only possible through the cooperation of different organisms. In 2019, Rafael Laso-Pérez and Gunter Wegener from the Max Planck Institute for Marine Microbiology suggested that a special archaeon can do this all by itself, as indicated by their genome analyses. Now, in collaboration with a team from China, the researchers have succeeded in cultivating this “miracle microbe” in the laboratory. This enabled them to describe exactly how the microbe achieves the transformation. They also discovered that it prefers to eat rather bulky chunks of food.

Underground oil deposits on land and in the sea are home to microorganisms that use the oil as a source of energy and food, converting it into methane. Until recently, it was thought that this conversion was only possible in a complicated teamwork between different organisms: certain bacteria and usually two archaeal partners. Now the researchers have managed to cultivate an archaeon called Methanoliparia from a settling tank of an oil production facility that handles this complex reaction all by itself.

This “miracle microbe” breaks down oil into methane and carbon dioxide. Now that the researchers have succeeded in cultivating these microorganisms in the laboratory, they were able to investigate the underlying processes in detail. They discovered that its genetic make-up gives Methanoliparia unique capabilities. “In its genes it carries the blueprints for enzymes that can activate and decompose various hydrocarbons. In addition, it also has the complete gear kit of a methane producer.

n their laboratory cultures, the researchers offered the microbes various kinds of food and used a variety of different methods to keep a close eye on how Methanoliparia deal with it. What was particularly surprising to see was that this archaeon activated all the different hydrocarbons with one and the same enzyme.

Zhuo Zhou, Cui-jing Zhang, Peng-fei Liu, Lin Fu, Ra­fael Laso-Pérez, Lu Yang, Li-ping Bai, Ji­ang Li, Min Yang, Jun-zhang Lin, Wei-dong Wang, Gunter We­gener, Meng Li, Lei Cheng (2021): Non-syn­trophic meth­ano­genic hy­dro­car­bon de­grad­a­tion by an ar­chaeal spe­cies. Nature (2021)

DOI: 10.1038/s41586-021-04235-2 

https://researchnews.cc/news/10687/A-special-microbe-turns-oil-into...

Comment by Dr. Krishna Kumari Challa on December 24, 2021 at 11:00am

Mind-controlled robots now one step closer

Comment by Dr. Krishna Kumari Challa on December 24, 2021 at 10:48am

Comets' heads can be green, but never their tails. We finally know now why.

 Every so often, the Kuiper Belt and Oort Cloud throw galactic snowballs made up of ice, dust and rocks our way: 4.6-billion-year-old leftovers from the formation of the solar system.

These snowballs – or as we know them, comets – go through a colourful metamorphosis as they cross the sky, with many comets’ heads turning a radiant green colour that gets brighter as they approach the Sun.

But strangely, this green shade disappears before it reaches the one or two tails trailing behind the comet.

Astronomers, scientists and chemists have been puzzled by this mystery for almost a century. In the 1930s, physicist Gerhard Herzberg theorised the phenomenon was due to sunlight destroying diatomic carbon (also known as dicarbon or C2), a chemical created from the interaction between sunlight and organic matter on the comet’s head – but as dicarbon isn’t stable, this theory has been hard to test.

A new UNSW Sydney-led study, published in Proceedings of the National Academy of Sciences (PNAS), has finally found a way to test this chemical reaction in a laboratory – and in doing so, has proven this 90-year-old theory correct.

This explains why the green coma – the fuzzy layer of gas and dust surrounding the nucleus – shrinks as a comet gets closer to the Sun, and also why the tail of the comet isn’t green.

The key player at the centre of the mystery, dicarbon, is both highly reactive and responsible for giving many comets their green colour. It’s made up of two carbon atoms stuck together and can only be found in extremely energetic or low oxygen environments like stars, comets and the interstellar medium.

Dicarbon doesn’t exist on comets until they get close to the Sun. As the Sun starts to warm the comet up, the organic matter living on the icy nucleus evaporates and moves to the coma. Sunlight then breaks up these larger organic molecules, creating dicarbon.

The UNSW-led team have now shown that as the comet gets even closer to the Sun, the extreme UV radiation breaks apart the dicarbon molecules it recently created in a process called ‘photodissociation’. This process destroys the dicarbon before it can move far from the nucleus, causing the green coma to get brighter and shrink – and making sure the green tinge never makes it into the tail.

This is the first time this chemical interaction has been studied here on Earth.

  1. Jasmin Borsovszky, Klaas Nauta, Jun Jiang, Christopher S. Hansen, Laura K. McKemmish, Robert W. Field, John F. Stanton, Scott H. Kable, Timothy W. Schmidt. Photodissociation of dicarbon: How nature breaks an unusual multiple bond. Proceedings of the National Academy of Sciences, 2021; 118 (52): e2113315118 DOI: 10.1073/pnas.2113315118
Comment by Dr. Krishna Kumari Challa on December 24, 2021 at 8:43am

Circumstantially, microplastics have also been shown to stir up trouble by generating reactive oxygen species that are known to play a role in inflammation.

With that in mind, it's not at all surprising to imagine an increase in gut exposure to microplastic particles might play a similar role to certain microbes in sensitizing the lining to an exaggerated immune reaction.

Further studies will be needed before we can claim with any confidence that our dietary supplement of plastic dust is putting us at increased risk of any health problems. There are still too many unknowns.

But that doesn't mean we shouldn't be taking action. Evidence that the rising tide of plastic waste is affecting everything from the climate to the distribution of species to the health of marine life is mounting.

That our health might be just one more consequence is just more reason to wean ourselves off our dependence on this pervasive pollutant.

https://pubs.acs.org/doi/10.1021/acs.est.1c03924

https://www.sciencealert.com/inflammatory-bowel-disease-feces-found...

Part 3

**

 

Members (22)

 
 
 

Badge

Loading…

© 2024   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service