Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 1 hour ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 1 hour ago. 1 Reply 0 Likes
For years, scientists have believed that inflammation inevitably increases with age, quietly fueling diseases like …Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 4 hours ago. 1 Reply 0 Likes
Is plagiarism really plagiarism? When plagiarism is not really plagiarism!Now read this report of a research paper I came across.... Massive study detects AI fingerprints in millions of scientific…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Saturday. 1 Reply 0 Likes
Q: Is it a fact that cancer is also genetically inherited? If so, how much percentage of cancer affected patients have genetically inherited cancer? K: While most cancers are not directly inherited,…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Saturday. 1 Reply 0 Likes
Q: What are wet bulb and dry bulb temperatures?Krishna: Dry bulb temperature is the temperature of the air as measured by a standard thermometer, while wet bulb temperature is the temperature…Continue
Comment
Nanoplastics interact with a particular protein that is naturally found in the brain, creating changes linked to Parkinson's disease and some types of dementia.
In a study appearing Nov. 17 in Science Advances, researchers report that the findings create a foundation for a new area of investigation, fueled by the timely impact of environmental factors on human biology.
Parkinson's disease has been called the fastest growing neurological disorder in the world. Numerous lines of data suggest environmental factors might play a prominent role in Parkinson's disease, but such factors have for the most part not been identified till now.
Improperly disposed plastics have been shown to break into very small pieces and accumulate in water and food supplies, and were found in the blood of most adults in a recent study.
This new study suggests that the emergence of micro and nanoplastics in the environment might represent a new toxin challenge with respect to Parkinson's disease risk and progression. This is especially concerning given the predicted increase in concentrations of these contaminants in our water and food supplies.
Part 1
Could the solution to the decades-long battle against malaria be as simple as soap? In a new study published in PLOS Neglected Tropical Diseases, scientists have made a compelling case for it.
A research team has found that adding small quantities of liquid soap to some classes of pesticides can boost their potency by more than 10-fold. The discovery is promising news as malaria-carrying mosquitoes display an increasing resistance to current insecticides.
Both laboratory tests and field trials have shown that neonicotinoids, a special class of insecticide, are a promising alternative to target populations showing resistance to existing insecticides. Neonicotinoids, however, do not kill some mosquito species unless their potency is boosted. In this case, the researchers say, soap is the boosting substance.
Colince Kamdem et al, Vegetable oil-based surfactants are adjuvants that enhance the efficacy of neonicotinoid insecticides and can bias susceptibility testing in adult mosquitoes, PLoS Neglected Tropical Diseases (2023).
In this new study, the researchers addressed whether they could similarly use heat to shift the charge and generate electricity. They edited the genetic code of the viruses to include a specific protein sequence that is attracted to nickel. This way, the viruses would bind to and stand straight up on a thin nickel-coated plate, like a city block of skyscrapers. Then, they blasted these viral cities with heat, either with fire or a laser. As the proteins melted and unfolded, the proteins’ charges became unbalanced, generating voltage. The heat induced a polarization change, and the polarization change induced the electric potential.
Although the naturally occurring helical protein produces some pyroelectricity, the researchers wanted to see if they could give the molecule some added spark. To do this, they genetically altered the bacteriophage to add a string of glutamate, a negatively charged building block of proteins, into the outside of the coat protein.1,4 When the researchers turned up the heat, the added glutamate amplified the polarization change, more than doubling the pyroelectricity of the normal protein.
“The very fact that they can genetically mutate the virus and make them pyroelectric—it's fascinating work, according to some physicists.
To demonstrate the practical applications of their supercharged virus, the research team generated electrical signatures that flag the presence of hazardous chemicals. To do this, they engineered the protein coat to bind xylene. Then when they heat blasted the bacteriophages, the proteins shapeshifted and produced more electricity. By detecting this difference in electricity, the authors say that the viruses could act as biosensors for harmful gases.
part2
Our bodies are alive with electrical signals that allow us to contract muscles and sense the world. The complex brain orchestrates these processes, but it turns out that even simpler biological entities generate electricity. In a new study published in Advanced Materials, researchers reported that a bioengineered virus generated electricity when exposed to heat, a phenomenon known as pyroelectricity. By working with viruses, the researchers hope to better understand bioelectricity in the human body and apply this knowledge to power novel biomaterials.
The M13 bacteriophage, a rod-shaped virus that infects bacteria, is adorned in a molecular coat, woven from nearly 3,000 copies of a helical protein. The protein is positively charged on the inside and negatively charged on the outside, but the arrangement of the thick protein coat balances out the charges.
Over a decade ago, a research team put the squeeze on the coat proteins, which caused the bacteriophage to exhibit piezoelectricity—the ability to transform mechanical force into electricity. When the researchers applied pressure to the viruses, the coat proteins changed shape, breaking the charge symmetry and becoming polarized, which generated an electric field and induced a current.
part1
Green light means “go.” That might apply to evaporating water molecules too.
Visible light, especially that of a greenish hue, might spur water to evaporate, researchers report in the Nov. 7 Proceedings of the National Academy of Sciences. In experiments, water evaporating under visible light showed a higher evaporation rate than possible based on heat alone.
Coupled with other observations, they say, the finding suggests that when light shines on water, individual particles of light, or photons, can sever the bonds that connect water molecules, releasing clusters of molecules into the air.
In the new study, the researchers shone light on water contained in porous hydrogels, materials that greedily sop up water. The proposed effect occurs where air meets water, and the hydrogels the researchers studied contain innumerable crannies where the two meet, allowing the water to be cleaved off and escape. In some cases, the evaporation rate was more than double the expectation based on heat. What’s more, the evaporation rate varied with the wavelength of the light. Green light produced the highest evaporation rate.
Y. Tu et al. Plausible photomolecular effect leading to water evaporation exceed.... Proceedings of the National Academy of Sciences. Vol. 120, November 7, 2023, e2312751120. doi: 10.1073/pnas.2312751120.
They used social marketing—a process that focuses on changing behavior to improve health using strategies from the commercial marketing world—to create a faster, more cost-effective plan to directly educate the people responsible for the manufacturing and repairing of the pumps.
The researchers worked with local staff to build the capacity and skill set of technicians, while overseeing and facilitating work on the pumps to ensure they understood how to remove and replace the leaded pump components. Additionally, to understand the impact of this intervention, they worked with local health practitioners to measure blood lead levels of small children who drank water from the pumps before and after the leaded pump components were replaced.
Of the 55 children tested, 87 percent experienced a significant decrease in blood lead levels once leaded components were removed from the pumps.
Adaline M. Buerck et al, Reductions in Children's Blood Lead Levels from a Drinking-Water Intervention in Madagascar, Sub-Saharan Africa, Environmental Science & Technology (2023). DOI: 10.1021/acs.est.3c03774
Part 2
**
A team of engineers and public health experts helped residents reduce their exposure to lead—a major global environmental pollutant that causes more than 1 million premature deaths each year. By combining efforts to replace water pumps and educate city technicians, these researchers helped decrease the blood lead levels of 87 percent of the children tested during their study.
The lead concentrations of the water from the pumps exceeded the World Health Organization's recommended limit of lead in drinking water—10 micrograms per liter. In some cases, the water contained more than 10 times the recommended limit.
The families and children are drinking this water and using it to cook their meals.
In low- and middle-income countries, there is a lack of regulations and understandings of the harmful effects of lead, as well as other comorbidities, such as improper nutrition, that can increase childhood lead absorption.
The pumps are the primary source of water for more than three-quarters of the coastal area of Madagascar, where there are about 9,000 pumps because tap water is not always affordable or available for the city's 280,000 people.
Part 1
Every cell in the human body contains the same genetic instructions, encoded in its DNA. However, out of about 30,000 genes, each cell expresses only those genes that it needs to become a nerve cell, immune cell, or any of the other hundreds of cell types in the body.
Each cell's fate is largely determined by chemical modifications to the proteins that decorate its DNA; these modification in turn control which genes get turned on or off. When cells copy their DNA to divide, however, they lose half of these modifications, leaving the question: How do cells maintain the memory of what kind of cell they are supposed to be?
A new MIT study proposes a theoretical model that helps explain how these memories are passed from generation to generation when cells divide. The research team suggests that within each cell's nucleus, the 3D folding pattern of its genome determines which parts of the genome will be marked by these chemical modifications.
After a cell copies its DNA, the marks are partially lost, but the 3D folding allows each daughter cell to easily restore the chemical marks needed to maintain its identity. And each time a cell divides, chemical marks allow a cell to restore its 3D folding of its genome. This way, by juggling the memory between 3D folding and the marks, the memory can be preserved over hundreds of cell divisions.
Jeremy A. Owen et al, Design principles of 3D epigenetic memory systems, Science (2023). DOI: 10.1126/science.adg3053. www.science.org/doi/10.1126/science.adg3053
The internal clocks of grizzly bears appear to keep ticking through hibernation, according to a genetic study. This persistence highlights the strong role of circadian rhythms in the metabolism of many organisms including humans.
The genetic study confirmed observational evidence that bears' energy production still waxes and wanes in a daily pattern even as they slumber for several months without eating. The researchers also found that during hibernation the amplitude of the energy production was blunted, meaning the range of highs and lows was reduced. The peak also occurred later in the day under hibernation than during the active season, but the daily fluctuation was still there.
This underscores the importance of the circadian rhythms themselves—that they give organisms the flexibility to still function in a state as extreme as a hibernating bear.
Other research has shown that circadian rhythms, the 24-hour physical cycles common to most living animals on Earth, have ties to metabolic health. In humans, major disruptions to these patterns, such as occur in night shift work, have been linked to metabolic problems like weight gain and higher prevalence of diabetes.
Ellery P. Vincent et al, Circadian gene transcription plays a role in cellular metabolism in hibernating brown bears, Ursus arctos, Journal of Comparative Physiology B (2023). DOI: 10.1007/s00360-023-01513-5
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!