Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 22 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Why do type 2 diabetics sometimes become thin if their condition is not managed properly?Earlier we used to get this answer to the Q : Type 2 diabetics may experience weight loss and become thin due…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 1 Reply 0 Likes
Movies and TV serials shaped how many people imagine a heart attack—someone clutching their chest and collapsing dramatically. But those portrayals are misleading and shouldn't be expected, say the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Friday. 13 Replies 0 Likes
Recent measles outbreak in the California state of the US ( now spread to other states too) tells an interesting story.Vaccines are not responsible for the woes people face but because of rejection…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Thursday. 5 Replies 0 Likes
When I was a very young school girl, I still remember very well, my Dad used to tell me to bear the pain out and not to scream and cry whenever I hurt myself and was in severe pain. I never ever saw…Continue
Comment
Robust chemicals once used in everything from cosmetics to waterproofing to food containers to firefighting foam could have a significant impact on the fertility of women worldwide.
A new study led by researchers from the Icahn School of Medicine at Mount Sinai in the US uncovered evidence in a sample of women in Singapore linking plasma concentrations of perfluoroalkyl substances (PFAS) with an increase in the difficulty of becoming pregnant.
Though the nature of this connection isn't clear, the results add to growing concerns that concentrations of so-called 'forever chemicals' across Earth's surface are silently putting our health at risk and could do for some time to come.
Per- and poly-fluoroalkyl substances such as PFAS are synthetic compounds that have found a wide range of applications in different consumer products since the mid-20th century. Useful as a barrier against water or oily substances, they're commonly encountered as non-stick and stain-resistant coatings.
One of their perks is the strength of the carbon-fluoride bond, which resists degradation. Unfortunately, this also happens to be one of their liabilities, allowing them to persist for years in the environment in ever-increasing concentrations.
Given that these materials are so widespread and encompass a vast catalog of thousands of variants, the chances of potential toxins hiding out in their midst have become too great to ignore.
"PFAS can disrupt our reproductive hormones and have been linked with delayed puberty onset and increased risks for endometriosis and polycystic ovary syndrome in few previous studies," says the new study's senior author.
What this study adds is that PFAS may also decrease fertility in women who are generally healthy and are naturally trying to conceive.
Just why this is the case is still a matter of speculation, though it's a good bet PFAS might interrupt the typical functioning of reproductive hormones in some way.
This study strongly implies that women who are planning pregnancy should be aware of the harmful effects of PFAS and take precautions to avoid exposure to this class of chemicals, especially when they are trying to conceive.
https://www.sciencedirect.com/science/article/abs/pii/S004896972300...
**
Novel drug makes mice skinny even on sugary, fatty diet
Researchers have developed a small-molecule drug that prevents weight gain and adverse liver changes in mice fed a high-sugar, high-fat Western diet throughout life.
When this drug is given to the mice for a short time, they start losing weight. They all become slim.
The research team discovered the drug by first exploring how magnesium impacts metabolism, which is the production and consumption of energy in cells. This energy, called ATP, fuels the body's processes.
Magnesium plays many key roles in good health, including regulating blood sugar and blood pressure and building bones. But the researchers found that too much magnesium slows energy production in mitochondria, which are cells' power plants. It puts the brake on, it just slows down.
Deleting MRS2, a gene that promotes magnesium transport into the mitochondria, resulted in more efficient metabolism of sugar and fat in the power plants. The result: skinny, healthy mice.
Liver and adipose (fat) tissues in the rodents showed no evidence of fatty liver disease, a complication related to poor diet, obesity and type 2 diabetes.
The drug, which the researchers call CPACC, accomplishes the same thing. It restricts the amount of magnesium transfer into the power plants. In experiments, the result was again: skinny, healthy mice.
Lowering the mitochondrial magnesium mitigated the adverse effects of prolonged dietary stress.
A drug that can reduce the risk of cardiometabolic diseases such as heart attack and stroke, and also reduce the incidence of liver cancer, which can follow fatty liver disease, will make a huge impact.
Travis R. Madaris, Manigandan Venkatesan, Soumya Maity, Miriam C. Stein, Neelanjan Vishnu, Mridula K. Venkateswaran, James G. Davis, Karthik Ramachandran, Sukanthathulse Uthayabalan, Cristel Allen, Ayodeji Osidele, Kristen Stanley, Nicholas P. Bigham, Terry M. Bakewell, Melanie Narkunan, Amy Le, Varsha Karanam, Kang Li, Aum Mhapankar, Luke Norton, Jean Ross, M. Imran Aslam, W. Brian Reeves, Brij B. Singh, Jeffrey Caplan, Justin J. Wilson, Peter B. Stathopulos, Joseph A. Baur, Muniswamy Madesh. Limiting Mrs2-dependent mitochondrial Mg2+ uptake induces metabolic programming in prolonged dietary stress. Cell Reports, 2023; 42 (3): 112155 DOI: 10.1016/j.celrep.2023.112155
Revealing Atomic Structures with a "Neutron" Camera
Researchers have developed a new kind of "camera" that sees the local disorder in materials. Its key feature is a variable shutter speed: because the disordered atomic clusters are moving, when the team used a slow shutter, the dynamic disorder blurred out, but when they used a fast shutter, they could see it. The new method doesn't work like a conventional camera--it uses neutrons to measure atomic positions with a shutter speed of around one picosecond, a trillion times faster than normal camera shutters.
New study finds co-infection with 'superbug' bacteria increases SARS-CoV-2 replication
Global data shows nearly 10 percent of severe COVID-19 cases involve a secondary bacterial co-infection—with Staphylococcus aureus, also known as staph A, being the most common organism responsible for co-existing infections with SARS-CoV-2. Researchers have found that the addition of a "superbug"—methicillin-resistant Staphylococcus aureus (MRSA)—into the mix could make the COVID-19 outcome even more deadly.
The mystery of how and why the combination of these two pathogens contributes to the severity of the disease remains unsolved. However, researchers have made significant progress toward solving this "whodunit."
New research has revealed that IsdA, a protein found in all strains of staph A, enhanced SARS-CoV-2 replication by 10- to 15-fold. The findings of this study are significant and could help inform the development of new therapeutic approaches for COVID-19 patients with bacterial co-infections.
Interestingly, the study, which was recently published in iScience, also showed that SARS-CoV-2 did not affect the bacteria's growth. This was contrary to what the researchers had initially expected.
https://www.cell.com/iscience/fulltext/S2589-0042(23)00052-4?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2589004223000524%3Fshowall%3Dtrue
People infected with SARS-CoV-2, the virus that causes COVID-19, may experience genome structure changes that not only may explain our immunological symptoms after infection, but also potentially link to long COVID, according to a new study by researchers.
This particular finding is quite unique and has not been seen in other coronaviruses before. It is a unique mechanism of SARS-CoV-2 that is associated with its severe impacts on human health.
The genetic materials in our cells are stored in a structure called chromatin. Some viruses of other categories have been reported to hijack or change our chromatin so that they can successfully reproduce in our cells. Whether and how SARS-CoV-2 may affect our chromatin was not known. In this study, researchers used leading-edge methods and comprehensively characterized the chromatin architecture in human cells after a COVID-19 infection.
Researchers found that many well-formed chromatin architectures of a normal cell become de-organized after infection. For example, there is one type of chromatin architecture termed A/B compartments that can be analogous to the yin and yang portions of our chromatin. After SARS-CoV-2 infection, they found that the yin and yang portions of the chromatin lose their normal shapes and start to mix together. Such mixing may be a reason for some key genes to change in infected cells, including a crucial inflammation gene, interleukin-6, that can cause cytokine storm in severe COVID-19 patients.
In addition, this work found that chemical modifications on chromatin were also altered by SARS-CoV-2. The changes of chemical modifications of chromatin were known to exert long-term effects on gene expression and phenotypes. Therefore, this finding may provide an unrealized new perspective to understand the viral impacts on host chromatin that can associate with long COVID.
Finding the mechanisms will offer therapeutic strategies to safeguard our chromatin and to better fight this virus.
Ruoyu Wang et al, SARS-CoV-2 restructures host chromatin architecture, Nature Microbiology (2023). DOI: 10.1038/s41564-023-01344-8
A male fly approaches a flower, lands on top of what he thinks is a female fly, and jiggles around. He's trying to mate, but it isn't quite working. He has another go. Eventually he gives up and buzzes off, unsuccessful. The plant, meanwhile, has got what it wanted: pollen.
A South African daisy, Gorteria diffusa, is the only daisy known to make such a complicated structure resembling a female fly on its petals. The mechanism behind this convincing three-dimensional deception, complete with hairy bumps and white highlights, has intrigued people for decades.
Now researchers have identified three sets of genes involved in building the fake fly on the daisy's petals. The big surprise is that all three sets already have other functions in the plant: one moves iron around, one makes root hairs grow, and one controls when flowers are made.
The study found that the three sets of genes have been brought together in the daisy petals in a new way to build fake lady flies. The "iron moving" genes add iron to the petal's normally reddish-purple pigments, changing the color to a more fly-like blue-green. The root hair genes make hairs expand on the petal to give texture. And the third set of genes make the fake flies appear in apparently random positions on the petals.
"This daisy didn't evolve a new 'make a fly' gene. Instead it did something even cleverer—it brought together existing genes, which already do other things in different parts of the plant, to make a complicated spot on the petals that deceives male flies.
The researchers say the daisy's petals give it an evolutionary advantage, by attracting more male flies to pollinate it. The plants grow in a harsh desert environment in South Africa, with only a short rainy season in which to produce flowers, get pollinated, and set seed before they die. This creates intense competition to attract pollinators—and the petals with fake lady flies make the South African daisy stand out from the crowd.
Beverley J. Glover, Multiple gene co-options underlie the rapid evolution of sexually deceptive flowers in Gorteria diffusa, Current Biology (2023). DOI: 10.1016/j.cub.2023.03.003. www.cell.com/current-biology/f … 0960-9822(23)00270-1
They can tell us about deep space in ways we can't learn otherwise.
These very high-energy neutrinos in the LHC are important for understanding really exciting observations in particle astrophysics.
FASERnu is an emulsion detector consisting of millimeter-thick tungsten plates alternated with layers of emulsion film. Tungsten was chosen because of its high density, which increases the likelihood of neutrino interaction; the detector consists of 730 emulsion films and a total tungsten mass of around 1 ton.
During particle experiments at the LHC, neutrinos can collide with nuclei in the tungsten plates, producing particles that leave tracks in the emulsion layers, a bit like the way ionizing radiation makes tracks in a cloud chamber.
These plates need to be developed, like photographic film, before the physicists can analyze the particle trails to find out what produced them.
Six neutrino candidates were identified and published back in 2021. Now, the researchers have confirmed their discovery, using data from the third run of the upgraded LHC that began last year, with a significance level of 16 sigma.
That means that the likelihood that the signals were produced by random chance is so low as to be almost nothing; a significance level of 5 sigma is sufficient to qualify as a discovery in particle physics.
The team's results have been presented at the 57th Rencontres de Moriond Electroweak Interaction....
Part 2
**
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!