Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 12 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 14 hours ago. 1 Reply 0 Likes
Recent research by scientists challenges the belief that mad cow disease is caused only by misfolded proteins—a discovery that sheds new light on the devastating outbreak in the United Kingdom 40…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 14 hours ago. 1 Reply 0 Likes
Several people ask this question: If cancer cells feed on sugars, why can’t we reduce sugar intake in cancer patients to control it? (1, 2)Well, we can’t completely stop carbohydrate intake. But now…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 14 hours ago. 1 Reply 0 Likes
DNA sequencing technology makes it possible to explore the genome to learn how humans adapted to live in a wide range of environments. Research has shown, for instance, that Tibetans living at high…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 14 hours ago. 1 Reply 0 Likes
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the…Continue
Comment
While the young Earth's atmosphere contained sulfur elements, scientists had long thought that organic sulfur compounds, or biomolecules like amino acids, emerged later as a product of the living system.
In previous simulations of early Earth, scientists either failed to detect meaningful amounts of sulfur biomolecules before life existed, or created the molecules only under specialized conditions that were unlikely to be widespread on this planet.
As a result, when the James Webb Space Telescope detected dimethyl sulfide, an organic sulfur compound produced by marine algae on Earth, on another planet called K2-18b, many thought it was a possible sign of life on other planets.
Previously, these researchers successfully created dimethyl sulfide in their lab using only light and common atmospheric gases. This suggested that this molecule could arise in places void of life.
This time,they set off to see what early Earth's sky could have contributed. They shone light on a gas mixture containing methane, carbon dioxide, hydrogen sulfide and nitrogen to simulate Earth's atmosphere before life emerged.
Using a highly sensitive mass spectrometry instrument that can identify and measure different chemical compounds, the team found that the early Earth simulation produced a whole suite of sulfur biomolecules, including the amino acids cysteine and taurine, as well as coenzyme M, a compound critical for metabolism.
When the team scaled their lab results to calculate how much cysteine an entire atmosphere could produce, they found that early Earth's sky might have brought cysteine to supply about one octillion—one followed by 27 zeros—cells. Currently, Earth boasts about one nonillion—one followed by 30 zeros—cells.
The team said in their paper these biomolecules formed in Earth's atmosphere might have fallen onto the ground or oceans with rain, helping to get life started.
An Archean atmosphere rich in sulfur biomolecules, Proceedings of the National Academy of Sciences (2025). DOI: 10.1073/pnas.2516779122
The breakup of a water jet into droplets is primarily triggered by intrinsic thermal capillary waves—angstrom-scale surface fluctuations—rather than external disturbances or nozzle imperfections. These minute thermal oscillations are amplified by Rayleigh-Plateau instability, determining the breakup length across a wide range of jet sizes.
Stefan Kooij et al, What Determines the Breakup Length of a Jet?, Physical Review Letters (2025). DOI: 10.1103/jf6w-l5sy
Exposure to fatty food odors during pregnancy and breastfeeding, even without maternal weight gain or high-fat intake, can alter offspring brain circuits related to reward and metabolism, increasing their risk of obesity and insulin resistance. Ingested flavoring agents with fatty odors were sufficient to trigger these effects in mice, highlighting potential implications for human metabolic health.
https://medicalxpress.com/news/2025-12-fatty-food-pregnancy-obesity...
**"Caching," is the scientific term for storing food in hidden places for later use. This behaviour is widespread across the animal kingdom, from squirrels, to crows, and wolves.
Caching behavior generally falls into one of two categories.
One is known as larder hoarding—think of a squirrel stashing nuts in just one or two places to draw from as they get through a long winter.
The other is known as scatter hoarding. It is where animals make smaller caches of surplus food in many different locations, reducing the chance of losing everything to a competitor or going hungry in lean seasons. It's mostly seen in wild canids such as foxes and wolves.
This behavior in modern dogs is an instinctual remnant. It reflects the competitive feeding patterns of their ancestors who lived by hunting, for whom securing food was unpredictable, but crucial for survival.
Dogs appear to rely on a combination of scent and observational spatial memory to remember where they have cached special items, such as food, treats and toys.
https://theconversation.com/your-dog-is-not-a-doomsday-prepper-here...
**
Images that require less neural energy to process are generally rated as more aesthetically pleasing, indicating that visual preference may be influenced by the brain's tendency to conserve energy. This suggests that aesthetic appreciation is linked to a balance between adequate visual stimulation and minimizing metabolic expenditure.
Humans may find images that take less energy to process aesthetically pleasing, suggesting that our attraction to beauty is at least partially an energy conservation strategy.
Looking at something can feel effortless, but in energetic terms, it isn't cheap. The brain uses 20% of the body's energy, and the visual system accounts for about 44% of that expenditure. Looking at very simple stimuli, like a blank white room, is energy-efficient but boring. Looking at very busy or unusual images can feel tiring and unpleasant.
Publishing in PNAS Nexus, researchers presented 4,914 images of objects and scenes to an in-silico model of the visual system to estimate the number of neurons needed to look at them. The authors compared these estimates to enjoyment ratings from 1,118 participants recruited using Amazon Mechanical Turk.
Next, they used blood oxygen level-dependent signal brain imaging to measure the energy costs of looking at images for 4 participants. In both experiments, study participants found images that took less energy to process more attractive. The authors asked for a quick response, meant to capture initial impressions, not the more complex pleasures that may arise from contemplating an image in a broader context by engaging with its meaning.
According to the authors, visual aesthetic appreciation may be a manifestation of an energy-conserving heuristic that creates a sweet spot between sufficient stimulation of the visual system and excessive metabolic cost.
Yikai Tang et al, Less is more: Aesthetic liking is inversely related to metabolic expense by the visual system, PNAS Nexus (2025). DOI: 10.1093/pnasnexus/pgaf347
Extrachromosomal DNA circles (ecDNA) in cancer cells persist by attaching to chromosomes during cell division using specific retention elements, mimicking natural gene regulation mechanisms. Disrupting this attachment, such as by adding methyl groups to retention elements, leads to ecDNA loss and reduced cancer cell survival, highlighting a potential therapeutic target for cancer treatment.
Venkat Sankar et al, Genetic elements promote retention of extrachromosomal DNA in cancer cells, Nature (2025). DOI: 10.1038/s41586-025-09764-8
**
Playing specific bat-like ultrasounds can suppress moth reproduction, offering a smart way to protect cropsExposure to bat-like ultrasonic pulses alters the behavior of Autographa nigrisigna moths, with higher pulse repetition rates causing erratic flight or flight cessation, especially in egg-bearing females. This response reduces egg-laying and suggests that ultrasonic cues can be used to suppress moth reproduction, offering a potential environmentally friendly method for crop protection. |
Ming Siang Lem et al, Ultrasonic pulse repetition rates triggering escape responses of a moth pest, Pest Management Science (2025). DOI: 10.1002/ps.70204
Conservation programs are often too focused on a single charismatic species.
With many species worldwide experiencing population declines, there is an urgent need for conservation initiatives to support their recovery. However, this urgency, combined with insufficient scientific knowledge about endangered species, means that conservationists have often relied on oversimplified measures of success. For example, historical conservation efforts often focused on the abundance of a single charismatic species as a proxy for overall ecosystem health.
Researchers highlight three examples from China where oversimplified conservation priorities led to negative outcomes. The Chinese giant salamander (Andrias davidianus) is known as a "cryptic species," because it has multiple, genetically distinct populations that look identical to the naked eye.
Unaware of this, conservationists began a large-scale captive breeding and reintroduction program, which led to genetic mixing that threatened native populations. In the case of the crested Ibis (Nipponia nippon) and Père David's deer (Elaphurus davidianus), intensive captive breeding and release programs with limited suitable habitat have resulted in overcrowding, inbreeding and increased mortality.
Although well-intentioned, these initiatives have caused unforeseen issues for the ecosystem, and have often failed to improve the conservation status of the target species.
To avoid repeating these mistakes, the researchers advocate for a more nuanced approach to conservation, focused on creating balanced ecosystems, restoring habitats and minimizing human intervention. Although there has recently been more emphasis placed on protecting whole ecosystems, charismatic species conservation is still prevalent in the world.
Conservation programs that aim to preserve and restore ecosystem functions are a more effective use of limited resources, and are less likely to have unintended consequences, the researchers say.
Shi H-T, et al. Are we over-conserving charismatic species? PLOS Biology (2025). DOI: 10.1371/journal.pbio.3003494
Cancer cells maintain their ability to divide by using telomerase to repair chromosome ends (telomeres). An internal actin protein network in the nucleus helps telomerase access damaged telomeres, supporting cell survival even after chemotherapy-induced DNA damage. Targeting telomerase or this actin network could enhance chemotherapy effectiveness and reduce side effects.
Ashley Harman et al, Nuclear actin and DNA replication stress regulate telomere maintenance by telomerase, Nature Communications (2025). DOI: 10.1038/s41467-025-66506-0
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!