Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: yesterday
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Small plastic particles are everywhere: in the soil where our food is grown, in the water we drink and in the air we breathe. They got there from the plastic we throw away, which ends up in landfill…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Mount Everest is about 15 to 50 meters taller than it would otherwise be because of uplift caused by a nearby eroding river gorge, and continues to grow because of it, finds a new study.…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Saturday. 4 Replies 1 Like
Anything goes here in India! If you give a concoction of toxins and tell people here it is a medicine for their good health, they will readily consume it without asking any questions. And suffer the…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Sep 27. 1 Reply 0 Likes
A new study challenges a 2019 World Health Organization report that microplastics in drinking water are…Continue
Comment
Plastic pollution is creating a ‘plastisphere’: a widespread habitat that includes pathogenic viruses and antimicrobial-resistant bacteria, a group of environmental researchers highlights. The problem has no easy fix, but the ecosystems of the plastisphere must be thoroughly studied, with..., if we’re to mitigate the risks posed by the pathogens lurking within.
Taking cues from another successful Pitt project that used electrical stimulation of the spinal cord to restore arm function in individuals affected by stroke, scientists hypothesized that stimulating the motor thalamus—a structure nested deep in the brain that acts as a key relay hub of movement control—using DBS could help restore movements that are essential for tasks of daily living, such as object grasping.
However, because the theory has not been tested before, they first had to test it in monkeys, which are the only animals that have the same organization of the connections between the motor cortex and the muscles as humans.
To understand the mechanism of how DBS of the motor thalamus helps improve voluntary arm movement and to finesse the specific location of the implant and the optimal stimulation frequency, researchers implanted the FDA-approved stimulation device into monkeys that had brain lesions affecting how effectively they could use their hands.
As soon as the stimulation was turned on, it significantly improved activation of muscles and grip force. Importantly, no involuntary movement was observed.
To verify that the procedure could benefit humans, the same stimulation parameters were used in a patient who was set to undergo DBS implantation into the motor thalamus to help with arm tremors caused by brain injury from a serious motor vehicle accident that resulted in severe paralysis in both arms.
As soon as the stimulation was turned on again, the range and strength of arm motion was immediately improved. The participant was able to lift a moderately heavy weight and reach, grasp and lift a drinking cup more efficiently and smoothly than without the stimulation.
To help bring this technology to more patients in the clinic, researchers are now working to test the long-term effects of DBS and determine whether chronic stimulation could further improve arm and hand function in individuals affected by traumatic brain injury or stroke.
Nature Communications (2024). DOI: 10.1038/s41467-024-52477-1. www.nature.com/articles/s41467-024-52477-1
Part 2
Deep brain stimulation may provide immediate improvement in arm and hand strength and function weakened by traumatic brain injury or stroke, researchers reported recently in Nature Communications.
Encouraging results from extensive tests in monkeys and humans open a path for a new clinical application of an already widely used brain stimulation technology and offer insights into neural mechanisms underlying movement deficits caused by brain injury.
Brain lesions caused by serious brain trauma or stroke can disrupt neural connections between the motor cortex, a key brain region essential for controlling voluntary movement, and the muscles. Weakening of these connections prevents effective activation of muscles and results in movement deficits, including partial or complete arm and hand paralysis.
To boost the activation of existing but weakened connections, researchers proposed using deep brain stimulation (DBS), a surgical procedure that involves placing tiny electrodes in specific areas of the brain to deliver electrical impulses that regulate abnormal brain activity. Over the past several decades, DBS has revolutionized the treatment of neurological conditions such as Parkinson's disease by providing a way to control symptoms that were once difficult to manage with medication alone.
DBS has been life-changing for many patients. Now, thanks to ongoing advancements in the safety and precision of these devices, DBS is being explored as a promising option for helping stroke survivors recover their motor functions.
Part 1
There arethree main types of blood cancers:
Common symptoms include: Fever, Drenching night sweats, Persistent fatigue, Weakness Bone/joint pain, Unexplained weight loss, Swollen lymph nodes, liver or spleen ,Anemia.
Some areas of the U.S. are experiencing a recent uptick in cases of a fungal lung infection called valley fever.
Valley fever is a fungus. It lives in the soil, and it's endemic, or known to be in regions in the Southwest, such as Arizona, lower California, New Mexico and parts of Mexico.
Valley fever is transmitted via inhalation of spores from the soil, especially during dusty months or high-dust exposure, such as in construction zones.
"Initial symptoms of valley fever can be cough, difficulty breathing, shortness of breath, sometimes a rash and joint aches, and also associated fatigue.
Most people with a healthy immune system can fight off valley fever naturally, but those with immune problems or on certain medications may be at higher risk.
The people getting really significant illness are those that have immune problems, or if you have diabetes or if you're on immune-suppressing medications can really put you at risk.
The best way to prevent valley fever is to avoid high-dust exposure.
If at all possible, if it's really dusty outside and you can really see the dust in the air, try to stay indoors and try to avoid that inhalation of that high-dust exposure.
Source: Tribune Content Agency, LLC.
**
Six people have been killed in Rwanda in an outbreak of Marburg virus, a highly infectious hemorrhagic fever similar to Ebola, the country's health ministry said recently.
The highly virulent microbe causes severe fever, often accompanied by bleeding and organ failure.
Marburg is part of the so-called filovirus family that also includes Ebola, which has wreaked havoc in several previous outbreaks in Africa.
Neighboring Tanzania reported cases of the disease in 2023, while Uganda experienced its last outbreak in 2017. The three countries share porous borders.
The suspected natural source of the Marburg virus is the African fruit bat, which carries the pathogen but does not fall sick from it.
The animals can pass the virus to primates in close proximity, including humans, and human-to-human transmission then occurs through contact with blood or other body fluids.
Fatality rates in confirmed cases have ranged from 24 percent to 88 percent in previous outbreaks, depending on the virus strain and case management, according to the World Health Organization (WHO).
There are currently no vaccines or antiviral treatments, but potential treatments, including blood products, immune and drug therapies, as well as early candidate vaccines, are being evaluated.
Source: AFP
**
A Minnesota resident who came into contact with a bat in July died of rabies, the state's department of health announced Friday.
The person's death marks a rare occurrence, as fewer than 10 people in the the U.S. die from rabies each year, according to the U.S. Centers of Disease Control and Prevention. The person is over the age of 65 and was exposed to a bat in western Minnesota in July, the Minnesota Department of Health said.
CDC officials confirmed the rabies diagnosis at its lab in Atlanta on Sept. 20. In a news release, the state health department said it was working to evaluate whether more people were exposed to the disease, but said there was no ongoing risk to the public
Officials said the fatal case advised the public to avoid contact with bats, whose teeth are so tiny that a bite may not be felt or even leave a noticeable mark.
Rabies is caused by a virus that invades the central nervous system and is usually fatal in animals and humans. If left untreated, rabies is almost always fatal. But rabies treatment has proven to be nearly highly effective at preventing the disease after an exposure, state health officials said. Treatment must be started before symptoms of rabies appear, they added.
The number of rabies-related human deaths in the U.S. has declined from more than 100 annually in the early 1900s to less than five cases annually in recent years, the health department. About 70% of infections acquired in the country are attributed to bat exposures.
Source: The Associated Press
**
A team of medical researchers affiliated with a large number of institutions in China has functionally cured a female patient with type 1 diabetes by injecting her with programmed stem cells.
For their study published in the journal Cell, the group extracted cells from the patient, reverted them to a pluripotent state, programmed them to grow into pancreatic islets, and then injected them back into her abdomen.
For unknown reasons, some people experience an immune attack that results in the destruction of islets in the pancreas that are responsible for making insulin. These incidents typically happen during the teen years, which is why the disease is also known as juvenile diabetes.
Because the islets are destroyed, any cure for the disease must involve replacing the islets somehow, either through transplantation from a donor, or in this new example, by using the person's own cells as the basis for creating pluripotent stem cells, which can be programmed to grow into replacement islets.
In this new effort, the researchers collected cells from three type 1 diabetes patients—all the cells were reverted to a pluripotent state and then programmed to grow into pancreatic islets. The researchers note that they modified the standard approach by exposing the cells to certain molecules rather than introducing proteins. The treatment process for the patients was staggered over time so that findings from the first patient could be applied to the second and then the third.
In a procedure lasting approximately 30 minutes, the researchers injected 1.5 million of the islets they had grown into the abdomen of the first patient, a 25-year-old woman. Placing them in the abdomen allowed for easy monitoring and removal if necessary. Two and a half months later, testing showed the patient was producing enough of her own insulin to stop injections.
After a year, she was still producing her own insulin. The research team notes that the patient was already receiving immunosuppressant drugs due to a prior liver transplant; thus, it is still not known if her immune system will replicate the type of attack that led her to have type 1 diabetes in the first place.
Shusen Wang et al, Transplantation of chemically induced pluripotent stem-cell-derived islets under abdominal anterior rectus sheath in a type 1 diabetes patient, Cell (2024). DOI: 10.1016/j.cell.2024.09.004
Imagine scrolling through social media only to be interrupted by insulting and harassing comments. What if an artificial intelligence (AI) tool stepped in to remove the abuse before you even saw it?
This isn't science fiction. Commercial AI tools like ToxMod and Bodyguard.ai are already used to monitor interactions in real time across social media and gaming platforms. They can detect and respond to toxic behavior.
The idea of an all-seeing AI monitoring our every move might sound Orwellian, but these tools could be key to making the internet a safer place.
However, for AI moderation to succeed, it needs to prioritize values like privacy, transparency, explainability and fairness. So can we ensure AI can be trusted to make our online spaces better? Two recent research projects into AI-driven moderation show this can be done—with more work ahead.
https://jigsaw.google.com/harassment-manager/
https://hateandhope.righttobe.org/pages/about-page
https://theconversation.com/online-spaces-are-rife-with-toxicity-we...
A cooling system that works on gravity instead of electricity
This device needs no electricity, as it extracts water from the air using nothing more than gravity and relies on cheap, readily available materials.
Along with keeping the solar cells and other semiconductor technologies cool, the water can be repurposed for irrigation, washing, cooling buildings on which the solar cells are placed, and other applications.
Scientists estimate that the atmosphere contains six times more water than all the fresh water in the rivers combined. This water can be collected by atmospheric water harvesting technologies.
While these technologies work reasonably well, in arid environments they require electricity to harvest practical amounts of water. This demand risks deterring the adoption of solar cells in rural regions , where electricity infrastructure is costly.
One reason for the low efficiency is that the water adheres to the surface of the harvesting device.
Researchers found that by adding a lubricant coating that is a mix of a commercial polymer and silicon oil, they could collect more water by relying on only gravity.
The system doesn't consume any electricity, leading to energy savings. Moreover, it doesn't rely on any mechanical parts like compressors or fans, reducing the maintenance over traditional systems, leading to further savings.
Shakeel Ahmad et al, Lubricated Surface in a Vertical Double‐Sided Architecture for Radiative Cooling and Atmospheric Water Harvesting, Advanced Materials (2024). DOI: 10.1002/adma.202404037
© 2024 Created by Dr. Krishna Kumari Challa. Powered by
You need to be a member of Science Simplified! to add comments!