Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 8 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Tuesday. 1 Reply 0 Likes
Don't blame the criminals for everything they do. A suspected perpetrator who can barely remember his name, several traffic violations committed by a woman in her mid-fifties who is completely…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Monday. 11 Replies 1 Like
Science and Trust series - Part 2 "Science is heroic. It fuels the economy, it feeds the world, it fights disease" - Tom SiegfriedIn the…Continue
Tags: mistrust, media, DrKrishnaKumariChalla, science-communication, scientists
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Aug 24. 1 Reply 0 Likes
Q: Do animals drink alcohol?Krishna:In nature, plants don’t produce ethanol directly. Instead, it’s made primarily by the yeast Saccharomyces cerevisiae as it ferments sugars. Evidence suggests that…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Aug 24. 5 Replies 0 Likes
Interactive science series CRITICAL THINKING - an important aspect of becoming a true scientistQ: You emphasize on…Continue
Comment
The cephalic furrow is especially interesting because it is a prominent embryonic invagination whose formation is controlled by genes, but that has no obvious function during development. The fold does not give rise to specific structures, and later in development, it simply unfolds, leaving no trace.
With their experiments, the researchers show that the absence of the cephalic furrow leads to an increase in the mechanical instability of embryonic tissues and that the primary sources of mechanical stress are cell divisions and tissue movements typical of gastrulation. They demonstrate that the formation of the cephalic furrow absorbs these compressive stresses. Without a cephalic furrow, these stresses build up, and outward forces caused by cell divisions in the single-layered blastula cause mechanical instability and tissue buckling.
This intriguing physical role gave the researchers the idea that the cephalic furrow may have evolved in response to the mechanical challenges of dipteran gastrulation, with mechanical instability acting as a potential selective pressure.
Flies either feature a cephalic furrow, or if they lack one, display widespread out-of-plane division, meaning the cells divide downward to reduce the surface area. Both mechanisms act as mechanical sinks to prevent tissue collision and distortion.
These findings uncover empirical evidence for how mechanical forces can influence the evolution of innovations in early development. The cephalic furrow may have evolved through genetic changes in response to the mechanical challenges of dipteran gastrulation. They show that mechanical forces are not just important for the development of the embryo but also for the evolution of its development.
Patterned invagination prevents mechanical instability during gastrulation, Nature (2025). DOI: 10.1038/s41586-025-09480-3
Bipasha Dey et al, Divergent evolutionary strategies pre-empt tissue collision in gastrulation. Nature (2025). DOI: 10.1038/s41586-025-09447-4
Part 2
A tissue fold known as the cephalic furrow, an evolutionary novelty that forms between the head and the trunk of fly embryos, plays a mechanical role in stabilizing embryonic tissues during the development of the fruit fly Drosophila melanogaster.
Researchers have integrated computer simulations with their experiments and showed that the timing and position of cephalic furrow formation are crucial for its function, preventing mechanical instabilities in the embryonic tissues.
The work appears in Nature.
The increased mechanical instability caused by embryonic tissue movements may have contributed to the origin and evolution of the cephalic furrow genetic program. This shows that mechanical forces can shape the evolution of new developmental features.
Mechanical forces shape tissues and organs during the development of an embryo through a process called morphogenesis. These forces cause tissues to push and pull on each other, providing essential information to cells and determining the shape of organs. Despite the importance of these forces, their role in the evolution of development is still not well understood.
Animal embryos undergo tissue flows and folding processes, involving mechanical forces, that transform a single-layered blastula (a hollow sphere of cells) into a complex multi-layered structure known as the gastrula. During early gastrulation, some flies of the order Diptera form a tissue fold at the head-trunk boundary called the cephalic furrow. This fold is a specific feature of a subgroup of Diptera and is therefore an evolutionary novelty of flies.
Part1
New tool enables rapid, large-scale profiling of disease-linked RNA modifications
Researchers have developed a powerful tool capable of scanning thousands of biological samples to detect transfer ribonucleic acid (tRNA) modifications—tiny chemical changes to RNA molecules that help control how cells grow, adapt to stress and respond to diseases such as cancer and antibiotic‑resistant infections. This tool opens up new possibilities for science, health care and industry—from accelerating disease research and enabling more precise diagnostics, to guiding the development of more effective medical treatments for diseases such as cancer and antibiotic‑resistant infections.
Cancer and infectious diseases are complicated health conditions in which cells are forced to function abnormally by mutations in their genetic material or by instructions from an invading microorganism. The SMART-led research team is among the world's leaders in understanding how the epitranscriptome—the over 170 different chemical modifications of all forms of RNA—controls growth of normal cells and how cells respond to stressful changes in the environment, such as loss of nutrients or exposure to toxic chemicals. The researchers are also studying how this system is corrupted in cancer or exploited by viruses, bacteria and parasites in infectious diseases.
Current molecular methods used to study the expansive epitranscriptome and all of the thousands of different types of modified RNA are often slow, labor‑intensive, costly and involve hazardous chemicals which limit research capacity and speed.
To solve this problem, the SMART team developed a new tool that enables fast, automated profiling of tRNA modifications—molecular changes that regulate how cells survive, adapt to stress and respond to disease. This capability allows scientists to map cell regulatory networks, discover novel enzymes and link molecular patterns to disease mechanisms, paving the way for better drug discovery and development, and more accurate disease diagnostics.
SMART's automated system was specially designed to profile tRNA modifications across thousands of samples rapidly and safely. Unlike traditional methods—which are costly, labor‑intensive and use toxic solvents such as phenol and chloroform—this tool integrates robotics to automate sample preparation and analysis, eliminating the need for hazardous chemical handling and reducing costs. This advancement increases safety, throughput and affordability, enabling routine large‑scale use in research and clinical labs.
Jingjing Sun et al, tRNA modification profiling reveals epitranscriptome regulatory networks in Pseudomonas aeruginosa, Nucleic Acids Research (2025). DOI: 10.1093/nar/gkaf696
In the paper, they argue that fusions are a specific example of a more general and extensive internal force that applies across mutation types. Rather than local accidents arising at random locations in the genome disconnected from other genetic information, mutational processes put together multiple meaningful pieces of heritable information in many ways.
Genes that evolved to interact tightly are more likely to be fused; single-letter RNA changes that evolved to occur repeatedly across generations via regulatory phenomena are more likely to be "hardwired" as point mutations into the DNA; genes that evolved to interact in incipient networks, each under its own regulation, are more likely to be invaded by the same transposable element that later becomes a master-switch of the network, streamlining regulation, and so on. Earlier mutations influence the origination of later ones, forming a vast network of influences over evolutionary time.
Previous studies examined mutation rates as averages across genomic positions, masking the probabilities of individual mutations. But these new studies suggest that, at the scale of individual mutations, each mutation has its own probability, and the causes and consequences of mutation are related.
At each generation, mutations arise based on the information that has accumulated in the genome up to that time point, and those that survive become a part of that internal information.
This vast array of interconnected mutational activity gradually hones in over the generations on mutations relevant to the long-term pressures experienced, leading to long-term directed mutational responses to specific environmental pressures, such as the malaria and Trypanosoma–protective HbS and APOL1 mutations.
New genetic information arises in the first place, they argue, as a consequence of the fact that mutations simplify genetic regulation, hardwiring evolved biological interactions into ready-made units in the genome. This internal force of natural simplification, together with the external force of natural selection, act over evolutionary time like combined forces of parsimony and fit, generating co-optable elements that themselves have an inherent tendency to come together into new, emergent interactions.
Co-optable elements are generated by simplification under performance pressure, and then engage in emergent interactions—the source of innovation is at the system level.
Understood in the proper timescale, an individual mutation does not arise at random nor does it invent anything in and of itself.
The potential depth of evolution from this new perspective can be seen by examining other networks. For example, the gene fusion mechanism—where genes repeatedly used together across evolutionary time are more likely to be fused together by mutation—echoes chunking, one of the most basic principles of cognition and learning in the brain, where pieces of information that repeatedly co-occur are eventually chunked into a single unit.
Yet fusions are only one instance of a broader principle: diverse mutational processes respond to accumulated information in the genome, combining it over generations into streamlined instructions. This view recasts mutations not as isolated accidents, but as meaningful events in a larger, long-term process.
Daniel Melamed et al, De novo rates of a Trypanosoma -resistant mutation in two human populations, Proceedings of the National Academy of Sciences (2025). DOI: 10.1073/pnas.2424538122
Part 3
The new findings challenge the notion of random mutation fundamentally.
Historically, there have been two basic theories for how evolution happens— random mutation and natural selection, and Lamarckism—the idea that an individual directly senses its environment and somehow changes its genes to fit it. Lamarckism has been unable to explain evolution in general, so biologists have concluded that mutations must be random.
This new theory moves away from both of these concepts, proposing instead that two inextricable forces underlie evolution. While the well-known external force of natural selection ensures fitness, a previously unrecognized internal force operates inside the organism, putting together genetic information that has accumulated over generations in useful ways.
To illustrate, take fusion mutations, a type of mutation where two previously separate genes fuse to form a new gene. As for all mutations, it has been thought that fusions arise by accident: one day, a gene moves by error to another location and by chance fuses to another gene, once in a great while, leading to a useful adaptation. But researchers have recently shown that genes do not fuse at random.
Instead, genes that have evolved to be used together repeatedly over generations are the ones that are more likely to get fused. Because the genome folds in 3D space, bringing genes that work together to the same place at the same time in the nucleus with their chromatin open, molecular mechanisms fuse these genes rather than others. An interaction involving complex regulatory information that has gradually evolved over generations leads to a mutation that simplifies and "hardwires" it into the genome.
Part 2
A study published in the Proceedings of the National Academy of Sciences by scientists shows that an evolutionarily significant mutation in the human APOL1 gene arises not randomly but more frequently where it is needed to prevent disease, fundamentally challenging the notion that evolution is driven by random mutations and tying the results to a new theory that, for the first time, offers a new concept for how mutations arise.
Implications for biology, medicine, computer science, and perhaps even our understanding of the origin of life itself, are potentially far reaching.
A random mutation is a genetic change whose chance of arising is unrelated to its usefulness. Only once these supposed accidents arise does natural selection vet them, sorting the beneficial from the harmful. For over a century, scientists have thought that a series of such accidents has built up over time, one by one, to create the diversity and splendor of life around us.
However, it has never been possible to examine directly whether mutations in the DNA originate at random or not. Mutations are rare events relative to the genome's size, and technical limitations have prevented scientists from seeing the genome in enough detail to track individual mutations as they arise naturally.
To overcome this, researchers developed a new ultra-accurate detection method and recently applied it to the famous HbS mutation, which protects from malaria but causes sickle-cell anemia in homozygotes.
Results showed that the HbS mutation did not arise at random, but emerged more frequently exactly in the gene and population where it was needed. Now, they report the same nonrandom pattern in a second mutation of evolutionary significance.
The new study examines the de novo origination of a mutation in the human APOL1 gene that protects against a form of trypanosomiasis, a disease that devastated central Africa in historical times and until recently has caused tens of thousands of deaths there per year, while increasing the risk of chronic kidney disease in people with two copies.
If the APOL1 mutation arises by chance, it should arise at a similar rate in all populations, and only then spread under Trypanosoma pressure. However, if it is generated nonrandomly, it may actually arise more frequently where it is useful.
Results supported the nonrandom pattern: the mutation arose much more frequently in sub-Saharan Africans, who have faced generations of endemic disease, compared to Europeans, who have not, and in the precise genomic location where it confers protection.
Part 1
When the germ-free mice were just a handful of days old, the researchers found fewer neurons in their PVN, even when microbes were introduced after birth. That suggests the changes caused by these microorganisms happen in the uterus during development.
These neural modifications last, too: the researchers also found that the PVN was neuron-light even in adult mice, if they'd been raised to be germ-free. However, the cross-fostering experiment was not continued into adulthood (around eight weeks).
The details of this relationship still need to be worked out and researched in greater detail, but the takeaway is that microbes – specifically the mix of microbes in the mother's gut – can play a notable role in the brain development of their offspring.
Rather than shunning our microbes, we should recognize them as partners in early life development. They're helping build our brains from the very beginning, say the researchers.
While this has only been shown in mouse models so far, there are enough biological similarities between mice and humans that there's a chance we're also shaped by our mother's microbes before we're born.
One of the reasons this matters is because practices like Cesarean sections and the use of antibiotics around birth are known to disrupt certain types of microbe activity – which may in turn be affecting the health of newborns.
https://www.sciencedirect.com/science/article/pii/S0018506X25000686...
Part 2
**
Sixth generation, or 6G, wireless technology is one step closer to reality with news that researchers have unveiled the world's first "all-frequency" 6G chip. The chip is capable of delivering mobile internet speeds exceeding 100 gigabits per second (Gbps).
6G technology is the successor to 5G and promises to bring about a massive leap in how we communicate. It will offer benefits such as ultra-high-speed connectivity, ultra-low latency and AI integration that can manage and optimize networks in real-time. To achieve this, 6G networks will need to operate across a range of frequencies, from standard microwaves to much higher frequency terahertz waves. Current 5G technology utilizes a limited set of radio frequencies, similar to those used in previous generations of wireless technologies.
The new chip is no bigger than a thumbnail, measuring 11 millimeters by 1.7 millimeters. It operates across a wide frequency range, from 0.5 GHz to 115 GHz, which traditionally takes nine separate radio systems to cover this spectrum. While the development of a single all-frequency chip is a significant breakthrough, the technology is still in its early stages of development. Many experts expect that commercial 6G networks will begin to roll out around 2030.
Zihan Tao et al, Ultrabroadband on-chip photonics for full-spectrum wireless communications, Nature (2025). DOI: 10.1038/s41586-025-09451-8
Sweat and food stains can ruin your favorite clothes. But bleaching agents such as hydrogen peroxide or dry-cleaning solvents that remove stains aren't options for all fabrics, especially delicate ones. Now, researchers in ACS Sustainable Chemistry & Engineering report a simple way to remove yellow stains using a high-intensity blue LED light. They demonstrate the method's effectiveness at removing stains from orange juice, tomato juice and sweat-like substances on multiple fabrics, including silk.
The method utilizes visible blue light in combination with ambient oxygen, which acts as the oxidizing agent to drive the photobleaching process.This approach avoids the use of harsh chemical oxidants typically required in conventional bleaching methods, making it inherently more sustainable.
Yellow clothing stains are caused by squalene and oleic acid from skin oils and sweat, as well as natural pigments like beta carotene and lycopene, present in oranges, tomatoes and other foods. UV light is a potential stain-removing alternative to chemical oxidizers like bleach and hydrogen peroxide, but it can damage delicate fabrics.
The same researchers previously determined that a high-intensity blue LED light could remove yellow color from aged resin polymers, and they wanted to see whether blue light could also break down yellow stains on fabric without causing damage.
Initially, they exposed vials of beta carotene, lycopene and squalene to high-intensity blue LED light for three hours. All the samples lost color, and spectroscopic analyses indicated that oxygen in the air helped the photobleaching process by breaking bonds to produce colorless compounds.
Next, the team applied squalene onto cotton fabric swatches. After heating the swatches to simulate aging, they treated the samples for 10 minutes, by soaking them in a hydrogen peroxide solution or exposing them to the blue LED or UV light. The blue light reduced the yellow stain substantially more than hydrogen peroxide or UV exposure. In fact, UV exposure generated some new yellow-colored compounds.
Additional tests showed that the blue LED treatment lightened squalene stains on silk and polyester without damaging the fabrics. The method also reduced the color of other stain-causing substances, including aged oleic acid, orange juice and tomato juice, on cotton swatches.
High-intensity blue LED light is a promising way to remove clothing stains, but the researchers say they want to do additional colorfastness and safety testing before commercializing a light system for home and industrial use.
Tomohiro Sugahara et al, Environmentally Friendly Photobleaching Method Using Visible Light for Removing Natural Stains from Clothing, ACS Sustainable Chemistry & Engineering (2025). DOI: 10.1021/acssuschemeng.5c03907
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!