Science, Art, Litt, Science based Art & Science Communication
JAI VIGNAN
All about Science - to remove misconceptions and encourage scientific temper
Communicating science to the common people
'To make them see the world differently through the beautiful lense of science'
Members: 22
Latest Activity: 14 hours ago
WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING
THIS IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS
“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”
"Being a scientist is a state of mind, not a profession!"
"Science, when it's done right, can yield amazing things".
The Reach of Scientific Research From Labs to Laymen
The aim of science is not only to open a door to infinite knowledge and wisdom but to set a limit to infinite error.
"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.
Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.
If you are scientifically literate the world looks very different to you.
We do science and science communication not because they are easy but because they are difficult!
“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"
Links to some important articles :
1. Interactive science series...
a. how-to-do-research-and-write-research-papers-part 13
b. Some Qs people asked me on science and my replies to them...
Part 6, part-10, part-11, part-12, part 14 , part- 8,
part- 1, part-2, part-4, part-5, part-16, part-17, part-18 , part-19 , part-20
part-21 , part-22, part-23, part-24, part-25, part-26, part-27 , part-28
part-29, part-30, part-31, part-32, part-33, part-34, part-35, part-36, part-37,
part-38, part-40, part-41, part-42, part-43, part-44, part-45, part-46, part-47
Part 48, part49, Critical thinking -part 50 , part -51, part-52, part-53
part-54, part-55, part-57, part-58, part-59, part-60, part-61, part-62, part-63
part 64, part-65, part-66, part-67, part-68, part 69, part-70 part-71, part-73 ...
.......306
BP variations during pregnancy part-72
who is responsible for the gender of their children - a man or a woman -part-56
c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7
d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-
e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9
f. why astrology is pseudo-science part 15
g. How Science is demolishing patriarchal ideas - part-39
2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes
3. Science communication series:
a. science-communication - part 1
b. how-scienitsts-should-communicate-with-laymen - part 2
c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3
d. the-importance-of-science-communication-through-art- part 4
e. why-science-communication-is-geting worse - part 5
f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6
g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7
h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8
i. science-writers-and-communicators-where-are-you - part 9
j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10
k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11
l. golden-rules-of-science-communication- Part 12
m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13
n. an-informed-patient-is-the-most-cooperative-one -part 14
o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15
p. the-most-difficult-part-of-science-communication - part 16
q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17
r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18
s. is-post-truth-another-name-for-science-communication-failure?
t. why-is-it-difficult-for-scientists-to-have-high-eqs
u. art-and-literature-as-effective-aids-in-science-communication-and teaching
v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them
** qs-people-asked-me-on-science-and-my-replies-to-them-part-173
w. why-motivated-perception-influences-your-understanding-of-science
x. science-communication-in-uncertain-times
y. sci-com: why-keep-a-dog-and-bark-yourself
z. How to deal with sci com dilemmas?
A+. sci-com-what-makes-a-story-news-worthy-in-science
B+. is-a-perfect-language-important-in-writing-science-stories
C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc
D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way
E+. how-to-successfully-negotiate-the-science-communication-maze
4. Health related topics:
a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr
b. what-might-happen-when-you-take-lots-of-medicines
c. know-your-cesarean-facts-ladies
d. right-facts-about-menstruation
e. answer-to-the-question-why-on-big-c
f. how-scientists-are-identifying-new-preventive-measures-and-cures-
g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-
h. who-knows-better?
k. can-rust-from-old-drinking-water-pipes-cause-health-problems
l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply
m. melioidosis
o. desensitization-and-transplant-success-story
p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!
q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb
r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine
s. don-t-ignore-these-head-injuries
u. allergic- agony-caused-by-caterpillars-and-moths
General science:
a.why-do-water-bodies-suddenly-change-colour
b. don-t-knock-down-your-own-life-line
c. the-most-menacing-animal-in-the-world
d. how-exo-planets-are-detected
e. the-importance-of-earth-s-magnetic-field
f. saving-tigers-from-extinction-is-still-a-travail
g. the-importance-of-snakes-in-our-eco-systems
h. understanding-reverse-osmosis
i. the-importance-of-microbiomes
j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen
k. biomimicry-a-solution-to-some-of-our-problems
5. the-dilemmas-scientists-face
6. why-we-get-contradictory-reports-in-science
7. be-alert-pseudo-science-and-anti-science-are-on-prowl
8. science-will-answer-your-questions-and-solve-your-problems
9. how-science-debunks-baseless-beliefs
10. climate-science-and-its-relevance
11. the-road-to-a-healthy-life
12. relative-truth-about-gm-crops-and-foods
13. intuition-based-work-is-bad-science
14. how-science-explains-near-death-experiences
15. just-studies-are-different-from-thorough-scientific-research
16. lab-scientists-versus-internet-scientists
17. can-you-challenge-science?
18. the-myth-of-ritual-working
19.science-and-superstitions-how-rational-thinking-can-make-you-work-better
20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows
21. explanation-of-mysterious-lights-during-earthquakes
22. science-can-tell-what-constitutes-the-beauty-of-a-rose
23. what-lessons-can-science-learn-from-tragedies-like-these
24. the-specific-traits-of-a-scientific-mind
25. science-and-the-paranormal
26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?
27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does
28. how-to-make-scientific-research-in-india-a-success-story
29. getting-rid-of-plastic-the-natural-way
30. why-some-interesting-things-happen-in-nature
31. real-life-stories-that-proves-how-science-helps-you
32. Science and trust series:
a. how-to-trust-science-stories-a-guide-for-common-man
b. trust-in-science-what-makes-people-waver
c. standing-up-for-science-showing-reasons-why-science-should-be-trusted
You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum
( Please go through the comments section below to find scientific research reports posted on a daily basis and watch videos based on science)
Get interactive...
Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.
Our mail ID: kkartlabin@gmail.com
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa yesterday. 1 Reply 0 Likes
Why were people so drawn to phrenology? Credit: PixabayIt's hard to…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa on Sunday. 7 Replies 1 Like
Ladies and gentlemen say 'no' to this toxic empowerment. We had a discussion on reforms recently. During the process some people expressed the opinion that women…Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Apr 10. 1 Reply 0 Likes
Menstrual blood has historically been overlooked in research—considered only to be a …Continue
Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa Apr 8. 1 Reply 0 Likes
TV star Ben Grylls says he does it for survival—and teaches his …Continue
Comment
A groundbreaking new research project has analyzed the evolution of the placental mammal skull using 3D scans of 322 specimens housed in more than 20 international museum collections, and crafted a new model of how mammals diversified based on the emerging patterns.
By gathering data on the skulls of all major groups of placental mammals, both extinct and extant, the team of researchers have gained a unique look across time and taxa to trace the adaptive radiation (rapid evolution which fills a variety of ecological niches) of mammals and decipher what drove their incredible rise in the wake of the dinosaur extinction.
Although the earliest mammals existed alongside dinosaurs, they were relatively constrained in their diversity, with the largest mammals of the Mesozoic Era growing to be the size of a small dog. However, immediately after the extinction of the dinosaurs there is an incredible explosion of diversity among placental mammals with the earliest ancestors of today's living groups appearing in the fossil record within a few 100,000 years of this event.
However, this new study shows that after the initial burst of mammal diversification, the pace of evolution quickly slows down. Later bursts of faster evolution do occur, but their impacts get smaller and smaller through time, and never match the speed of that first peak. While uncertainty in the exact timing of these later bursts makes it is difficult to attribute them to specific events, they are likely caused by periods of rapid or sustained climate change and the global cooling through the Cenozoic era.
Part 1
The link between gut bacteria and rheumatoid arthritis
Researchers have discovered that a unique bacteria found in the gut could be responsible for triggering rheumatoid arthritis (RA) in people already at risk for the autoimmune disease.
They established that they can identify people who are at risk for RA based on serologic markers, and that these markers can be present in the blood for many years before diagnosis.
The researchers took the antibodies created by immune cells from individuals whose blood markers showed they were at risk for the disease and mixed them with the feces of the at-risk individuals to find the bacteria that were tagged by the antibodies.
To further test their hypothesis, the researchers used animal models to host the newly discovered bacteria. Those experiments showed that not only did the bacteria cause the animal models to develop the blood markers found in individuals at risk for RA; but some of the models showed development of full-blown RA as well.
They confirmed that the T cells in the blood of people with RA will respond to these bacteria, but people who are otherwise healthy do not respond to these bacteria.
If the unique species of bacteria is indeed driving the immune response that leads to RA in individuals already at risk for the disease. It might be possible to target the bacteria with medication to prevent that response from happening.
Meagan E. Chriswell et al, Clonal IgA and IgG autoantibodies from individuals at risk for rheumatoid arthritis identify an arthritogenic strain of Subdoligranulum, Science Translational Medicine (2022). DOI: 10.1126/scitranslmed.abn5166
**
Part 2
**
--
A UCLA-led study published today reveals that migratory birds across North America are getting smaller, a change the researchers attribute to the rapidly warming climate.
Quantum pseudo-telepathy is the fact that in certain Bayesian games with asymmetric information, players who have access to a shared physical system in an entangled quantum state, and who are able to execute strategies that are contingent upon measurements performed on the entangled physical system, are able to achieve higher expected payoffs in equilibrium than can be achieved in any mixed-strategy Nash equilibrium of the same game by players without access to the entangled quantum system.
In their 1999 paper,[1] Gilles Brassard, Richard Cleve and Alain Tapp demonstrated that quantum pseudo-telepathy allows players in some games to achieve outcomes that would otherwise only be possible if participants were allowed to communicate during the game.
This phenomenon came to be referred to as quantum pseudo-telepathy,[2] with the prefix pseudo referring to the fact that quantum pseudo-telepathy does not involve the exchange of information between any parties. Instead, quantum pseudo-telepathy removes the need for parties to exchange information in some circumstances.
By removing the need to engage in communication to achieve mutually advantageous outcomes in some circumstances, quantum pseudo-telepathy could be useful if some participants in a game were separated by many light years, meaning that communication between them would take many years. This would be an example of a macroscopic implication of quantum non-locality.
Quantum pseudo-telepathy is generally used as a thought experiment to demonstrate the non-local characteristics of quantum mechanics. However, quantum pseudo-telepathy is a real-world phenomenon which can be verified experimentally. It is thus an especially striking example of an experimental confirmation of Bell inequality violations.
Extreme weather from climate change triggered hunger in nearly 100 million people and increased heat deaths by 68% in vulnerable populations worldwide as the world's "fossil fuel addiction" degrades public health each year, doctors reported in a new study.
--
Government plans to cut greenhouse gas emissions aren't enough to avoid catastrophic global warming, with the planet on track to heat up between 2.1 and 2.9 degrees Celsius by the end of the century compared to pre-industrial times, according to a new report from the United Nations Framework Convention on Climate Change.
--
Researchers have discovered that certain hardy bacteria could survive in the hostile Martian conditions for millions of years, by testing the ability of a selection of ‘extremophile’ microbes — which can live in harsh environments — to survive in cold, radioactive conditions similar to those on Mars. The team found that, when dried and frozen, the Deinococcus radiodurans microbe could survive under the surface of Mars for 280 million years. The findings increase the chance that life could be found in future samples from the red planet.
--
Research laboratories and biotech companies are applying cellular-reprogramming techniques to animals to see whether they can make them more youthful. The methods are based on the Nobel-prizewinning discovery in 2006 by Japanese scientist Shinya Yamanaka, who turned adult cells into stem cells that resemble embryonic cells. Some scientists say they have found evidence of the procedure rejuvenating the animals and their organs. “We think we can turn back the clock,” Richard Klausner, chief scientist of the company Altos Labs, told an audience at an event in June. Investors are throwing billions into these initiatives, despite a lack of consensus among scientists on what causes ageing and when ageing even begins.
Writing in the journal BioScience, an international coalition of researchers says in a report published today that the Earth's vital signs have reached "code red" and that "humanity is unequivocally facing a climate emergency."
In the special report, "World Scientists' Warning of a Climate Emergency 2022," the authors note that 16 of 35 planetary vital signs they use to track climate change are at record extremes. The report's authors share new data illustrating increasing frequency of extreme heat events, rising global tree cover loss because of fires, and a greater prevalence of the mosquito-borne dengue virus. Further, they note that atmospheric carbon dioxide levels have reached 418 parts per million, the highest on record.
The report follows by five years the "World Scientists' Warning to Humanity: A Second Notice" published by Ripple and colleagues in BioScience and co-signed by more than 15,000 scientists in 184 countries.
As we can see by the annual surges in climate disasters, we are now in the midst of a major climate crisis, with far worse to come if we keep doing things the way we've been doing them, say the scientists.
The report points out that in the three decades since more than 1,700 scientists signed the original "World Scientists' Warning to Humanity" in 1992, global greenhouse gas emissions have increased by 40%.
As Earth's temperatures are creeping up, the frequency or magnitude of some types of climate disasters may actually be leaping up.
William J Ripple et al, World Scientists' Warning of a Climate Emergency 2022, BioScience (2022). DOI: 10.1093/biosci/biac083
William J. Ripple et al, World Scientists' Warning to Humanity: A Second Notice, BioScience (2017) DOI: 10.1093/biosci/bix125
For the first time, physicists have observed novel quantum effects in a topological insulator at room temperature. This breakthrough, published as the cover article of the October issue of Nature Materials, came when scientists explored a topological material based on the element bismuth.
The scientists have used topological insulators to demonstrate quantum effects for more than a decade, but this experiment is the first time these effects have been observed at room temperature. Typically, inducing and observing quantum states in topological insulators requires temperatures around absolute zero, which is equal to -459 degrees Fahrenheit (or -273 degrees Celsius).
This finding opens up a new range of possibilities for the development of efficient quantum technologies, such as spin-based electronics, which may potentially replace many current electronic systems for higher energy efficiency.
Nana Shumiya et al, Evidence of a room-temperature quantum spin Hall edge state in a higher-order topological insulator, Nature Materials (2022). DOI: 10.1038/s41563-022-01304-3
Scientists have discovered a way to create a material that can be made like a plastic, but conducts electricity more like a metal.
The research, published Oct. 26 in Nature, shows how to make a kind of material in which the molecular fragments are jumbled and disordered, but can still conduct electricity extremely well.
This goes against all of the rules we know about for conductivity. In principle, this opens up the design of a whole new class of materials that conduct electricity, are easy to shape, and are very robust in everyday conditions.
Conductive materials are absolutely essential if you're making any kind of electronic device, whether it be an iPhone, a solar panel, or a television. By far the oldest and largest group of conductors is the metals: copper, gold, aluminum. Then, about 50 years ago, scientists were able to create conductors made out of organic materials, using a chemical treatment known as "doping," which sprinkles in different atoms or electrons through the material.
This is advantageous because these materials are more flexible and easier to process than traditional metals, but the trouble is they aren't very stable; they can lose their conductivity if exposed to moisture or if the temperature gets too high.
But fundamentally, both of these organic and traditional metallic conductors share a common characteristic. They are made up of straight, closely packed rows of atoms or molecules. This means that electrons can easily flow through the material, much like cars on a highway. In fact, scientists till now thought a material had to have these straight, orderly rows in order to conduct electricity efficiently.
Then some researchers began experimenting with some materials discovered years ago, but largely ignored. They strung nickel atoms like pearls into a string of of molecular beads made of carbon and sulfur, and began testing.
To the scientists' astonishment, the material easily and strongly conducted electricity. What's more, it was very stable. When they heated it, chilled it, exposed it to air and humidity, and even dripped acid and base on it, and nothing happened. That is enormously helpful for a device that has to function in the real world.
But the most striking thing was that the molecular structure of the material was disordered.
They tried to understand how the material can conduct electricity. After tests, simulations, and theoretical work, they think that the material forms layers, like sheets in a lasagna. Even if the sheets rotate sideways, no longer forming a neat lasagna stack, electrons can still move horizontally or vertically—as long as the pieces touch.
The end result is unprecedented for a conductive material.
The discovery suggests a fundamentally new design principle for electronics technology.
John Anderson, Intrinsic glassy-metallic transport in an amorphous coordination polymer, Nature (2022). DOI: 10.1038/s41586-022-05261-4. www.nature.com/articles/s41586-022-05261-4
Even better, the treatment did not trigger any abdominal discomfort or changes to bowel habits, which can't be said of current medicines for weight gain like Orlistat.
The current research elaborates on these promising findings by comparing an array of 13 porous silica samples of various widths, absorption potentials, shapes, sizes, and surface chemistries.
These samples were each introduced to a human gastrointestinal model that simulated a fed state after a high-carbohydrate, high-fat meal. The model allowed for half an hour of gastric digestion and an hour of intestinal digestion and absorption.
Fat digestion was monitored by titrating fatty acids from what was absorbed, while starch digestion was monitored by measuring the concentration of sugars absorbed.
The authors say the ideal silica samples were silica microparticles with pore widths between 6 and 10 nanometers. These sizes seemed to inhibit the enzymes examined best.
The pores don't just appear to trap enzymes, either. It's more complicated than that, researchers think.
Some pores which were the optimal size for inhibiting starch digestion, for instance, were too large to optimally trap enzymes associated with fat digestion.
The porous sand particles also seemed to absorb digested and undigested nutrients from the gastrointestinal tract before they could pass into the system's bloodstream.
This could be another way in which the particles counter the input of calories.
Those particles with greater surface areas but smaller pores unable to impact digestive enzymes actually absorbed the most organic matter in models.
Further research on animal models will be needed to replicate these results.
https://www.mdpi.com/1999-4923/14/9/1813/htm
Part 2
**
Porous particles of silica made from purified sand could one day play a role in attempts to lose weight.
Past clinical trials have already produced promising results, but the actual weight-lowering mechanism behind the potential treatment has been poorly understood.
To sift out the key variables, researchers have now tested a range of silica sizes and shapes in a simulation of the human gut after a heavy meal.
The results support the idea that porous silica can "impede the digestive processes" that are usually triggered by enzymes breaking down fat, cholesterol, starches, and sugars in the stomach and intestines.
What's more, the size of administered nanoparticles seems to determine how much digestive activity is inhibited.
The authors acknowledge that their model is much too simple to perfectly mimic the complexity of the human gut during digestion, but given the ethics surrounding human clinical trials, gut simulations and animal models are closer than researchers might otherwise get.
Unlike other human gut models, this new one accounts for both fat digestion and carbohydrate digestion. The authors also analyzed the degree to which organic matter might be absorbed within the gastrointestinal tract.
It's possible that porous silica triggers a reduction of weight gain in other ways, too, but the new findings provide additional research with a more solid place to start.
In 2014, researchers found mice on high fat diets put on significantly less weight when fed nanoparticles of porous silica (MSPs). Their total body fat percentage was also reduced. Still, that effect seemed to be based on the relative size of the silica particles used. Larger particles were ultimately more effective.
Follow-up studies on mice supported these results. The right size and shape of porous silica particles seemed to determine the power of mouse digestion in the small intestine.
In 2020, the first clinical data on 10 healthy humans with obesity demonstrated that MSPs can reduce blood glucose levels and blood cholesterol levels, both of which are known risk factors for metabolic and cardiovascular complications.
Part 1
© 2025 Created by Dr. Krishna Kumari Challa.
Powered by
You need to be a member of Science Simplified! to add comments!