SCI-ART LAB

Science, Art, Litt, Science based Art & Science Communication

Information

Science Simplified!

                       JAI VIGNAN

All about Science - to remove misconceptions and encourage scientific temper

Communicating science to the common people

'To make  them see the world differently through the beautiful lense of  science'

Members: 22
Latest Activity: 15 hours ago

         WE LOVE SCIENCE HERE BECAUSE IT IS A MANY SPLENDOURED THING

     THIS  IS A WAR ZONE WHERE SCIENCE FIGHTS WITH NONSENSE AND WINS                                               

“The greatest enemy of knowledge is not ignorance, it is the illusion of knowledge.”             

                    "Being a scientist is a state of mind, not a profession!"

                  "Science, when it's done right, can yield amazing things".

         The Reach of Scientific Research From Labs to Laymen

The aim of science is not only to open a door to infinite knowledge and                                     wisdom but to set a limit to infinite error.

"Knowledge is a Superpower but the irony is you cannot get enough of it with ever increasing data base unless you try to keep up with it constantly and in the right way!" The best education comes from learning from people who know what they are exactly talking about.

Science is this glorious adventure into the unknown, the opportunity to discover things that nobody knew before. And that’s just an experience that’s not to be missed. But it’s also a motivated effort to try to help humankind. And maybe that’s just by increasing human knowledge—because that’s a way to make us a nobler species.

If you are scientifically literate the world looks very different to you.

We do science and science communication not because they are easy but because they are difficult!

“Science is not a subject you studied in school. It’s life. We 're brought into existence by it!"

 Links to some important articles :

1. Interactive science series...

a. how-to-do-research-and-write-research-papers-part 13

b. Some Qs people asked me on science and my replies to them...

Part 6part-10part-11part-12, part 14  ,  part- 8

part- 1part-2part-4part-5part-16part-17part-18 , part-19 , part-20

part-21 , part-22part-23part-24part-25part-26part-27 , part-28

part-29part-30part-31part-32part-33part-34part-35part-36part-37,

 part-38part-40part-41part-42part-43part-44part-45part-46part-47

Part 48 part49Critical thinking -part 50 , part -51part-52part-53

part-54part-55part-57part-58part-59part-60part-61part-62part-63

part 64, part-65part-66part-67part-68part 69part-70 part-71part-73 ...

.......306

BP variations during pregnancy part-72

who is responsible for the gender of  their children - a man or a woman -part-56

c. some-questions-people-asked-me-on-science-based-on-my-art-and-poems -part-7

d. science-s-rules-are-unyielding-they-will-not-be-bent-for-anybody-part-3-

e. debate-between-scientists-and-people-who-practice-and-propagate-pseudo-science - part -9

f. why astrology is pseudo-science part 15

g. How Science is demolishing patriarchal ideas - part-39

2. in-defence-of-mangalyaan-why-even-developing-countries-like-india need space research programmes

3. Science communication series:

a. science-communication - part 1

b. how-scienitsts-should-communicate-with-laymen - part 2

c. main-challenges-of-science-communication-and-how-to-overcome-them - part 3

d. the-importance-of-science-communication-through-art- part 4

e. why-science-communication-is-geting worse - part  5

f. why-science-journalism-is-not-taken-seriously-in-this-part-of-the-world - part 6

g. blogs-the-best-bet-to-communicate-science-by-scientists- part 7

h. why-it-is-difficult-for-scientists-to-debate-controversial-issues - part 8

i. science-writers-and-communicators-where-are-you - part 9

j. shooting-the-messengers-for-a-different-reason-for-conveying-the- part 10

k. why-is-science-journalism-different-from-other-forms-of-journalism - part 11

l.  golden-rules-of-science-communication- Part 12

m. science-writers-should-develop-a-broader-view-to-put-things-in-th - part 13

n. an-informed-patient-is-the-most-cooperative-one -part 14

o. the-risks-scientists-will-have-to-face-while-communicating-science - part 15

p. the-most-difficult-part-of-science-communication - part 16

q. clarity-on-who-you-are-writing-for-is-important-before-sitting-to write a science story - part 17

r. science-communicators-get-thick-skinned-to-communicate-science-without-any-bias - part 18

s. is-post-truth-another-name-for-science-communication-failure?

t. why-is-it-difficult-for-scientists-to-have-high-eqs

u. art-and-literature-as-effective-aids-in-science-communication-and teaching

v.* some-qs-people-asked-me-on-science communication-and-my-replies-to-them

 ** qs-people-asked-me-on-science-and-my-replies-to-them-part-173

w. why-motivated-perception-influences-your-understanding-of-science

x. science-communication-in-uncertain-times

y. sci-com: why-keep-a-dog-and-bark-yourself

z. How to deal with sci com dilemmas?

 A+. sci-com-what-makes-a-story-news-worthy-in-science

 B+. is-a-perfect-language-important-in-writing-science-stories

C+. sci-com-how-much-entertainment-is-too-much-while-communicating-sc

D+. sci-com-why-can-t-everybody-understand-science-in-the-same-way

E+. how-to-successfully-negotiate-the-science-communication-maze

4. Health related topics:

a. why-antibiotic-resistance-is-increasing-and-how-scientists-are-tr

b. what-might-happen-when-you-take-lots-of-medicines

c. know-your-cesarean-facts-ladies

d. right-facts-about-menstruation

e. answer-to-the-question-why-on-big-c

f. how-scientists-are-identifying-new-preventive-measures-and-cures-

g. what-if-little-creatures-high-jack-your-brain-and-try-to-control-

h. who-knows-better?

i. mycotoxicoses

j. immunotherapy

k. can-rust-from-old-drinking-water-pipes-cause-health-problems

l. pvc-and-cpvc-pipes-should-not-be-used-for-drinking-water-supply

m. melioidosis

n.vaccine-woes

o. desensitization-and-transplant-success-story

p. do-you-think-the-medicines-you-are-taking-are-perfectly-alright-then revisit your position!

q. swine-flu-the-difficlulties-we-still-face-while-tackling-the-outb

r. dump-this-useless-information-into-a-garbage-bin-if-you-really-care about evidence based medicine

s. don-t-ignore-these-head-injuries

t. the-detoxification-scam

u. allergic- agony-caused-by-caterpillars-and-moths

General science: 

a.why-do-water-bodies-suddenly-change-colour

b. don-t-knock-down-your-own-life-line

c. the-most-menacing-animal-in-the-world

d. how-exo-planets-are-detected

e. the-importance-of-earth-s-magnetic-field

f. saving-tigers-from-extinction-is-still-a-travail

g. the-importance-of-snakes-in-our-eco-systems

h. understanding-reverse-osmosis

i. the-importance-of-microbiomes

j. crispr-cas9-gene-editing-technique-a-boon-to-fixing-defective-gen

k. biomimicry-a-solution-to-some-of-our-problems

5. the-dilemmas-scientists-face

6. why-we-get-contradictory-reports-in-science

7. be-alert-pseudo-science-and-anti-science-are-on-prowl

8. science-will-answer-your-questions-and-solve-your-problems

9. how-science-debunks-baseless-beliefs

10. climate-science-and-its-relevance

11. the-road-to-a-healthy-life

12. relative-truth-about-gm-crops-and-foods

13. intuition-based-work-is-bad-science

14. how-science-explains-near-death-experiences

15. just-studies-are-different-from-thorough-scientific-research

16. lab-scientists-versus-internet-scientists

17. can-you-challenge-science?

18. the-myth-of-ritual-working

19.science-and-superstitions-how-rational-thinking-can-make-you-work-better

20. comets-are-not-harmful-or-bad-omens-so-enjoy-the-clestial-shows

21. explanation-of-mysterious-lights-during-earthquakes

22. science-can-tell-what-constitutes-the-beauty-of-a-rose

23. what-lessons-can-science-learn-from-tragedies-like-these

24. the-specific-traits-of-a-scientific-mind

25. science-and-the-paranormal

26. are-these-inventions-and-discoveries-really-accidental-and-intuitive like the journalists say?

27. how-the-brain-of-a-polymath-copes-with-all-the-things-it-does

28. how-to-make-scientific-research-in-india-a-success-story

29. getting-rid-of-plastic-the-natural-way

30. why-some-interesting-things-happen-in-nature

31. real-life-stories-that-proves-how-science-helps-you

32. Science and trust series:

a. how-to-trust-science-stories-a-guide-for-common-man

b. trust-in-science-what-makes-people-waver

c. standing-up-for-science-showing-reasons-why-science-should-be-trusted

You will find the entire list of discussions here: http://kkartlab.in/group/some-science/forum

( Please go through the comments section below to find scientific research  reports posted on a daily basis and watch videos based on science)

Get interactive...

Please contact us if you want us to add any information or scientific explanation on any topic that interests you. We will try our level best to give you the right information.

Our mail ID: kkartlabin@gmail.com

Discussion Forum

The three scientific cultures and their relevance to Biology

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 16 hours ago. 1 Reply

Researchers who study Earth's biosphere tend to operate from one of three scientific cultures, each with distinct ways of conducting science, and which have been operating mostly independently from…Continue

Baking powder and baking soda

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 16 hours ago. 1 Reply

Q; What is the difference between using fermentation method and baking soda while preparing food?Q: Is it harmful to use baking powder and baking soda while preparing food?Krishna: Fermentation is an…Continue

Light can vaporize water without the need for heat!

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 18 hours ago. 1 Reply

It's the most fundamental of processes—the evaporation of water from the surfaces of oceans and lakes, the burning off of fog in the morning sun, and the drying of briny ponds that leaves solid salt…Continue

Metal cutting by lasers

Started by Dr. Krishna Kumari Challa. Last reply by Dr. Krishna Kumari Challa 19 hours ago. 1 Reply

Q: Can other metals be impenetrable, resistant and/or immune to lasers?Krishna: …Continue

Comment Wall

Comment

You need to be a member of Science Simplified! to add comments!

Comment by Dr. Krishna Kumari Challa on June 11, 2016 at 8:38am

4 New Elements Get Names
The proposed names for elements 113, 115, 117 and 118 are nihonium, moscovium, tennessine and oganesson respectively, the International Union of Pure and Applied Chemistry (Iupac) has announced.
The criteria states an element may be named after a mythological figure or concept, geological place, scientist, elemental property, or mineral.
Nihonium (elemental symbol Nh) is the proposed name for element-113. The element was synthesised by Kosuke Morita’s group at RIKEN in Japan after they bombarded a bismuth target with zinc-70 nuclei in 2004 and 2012. Named after Japan, the element will be the first East Asian name to appear on the periodic table if ratified.
Scientists based in Russia and the US who discovered elements 115 and 117 have put forward the names moscovium (Mc) and tennessine (Ts), respectively. A collaboration between the Joint Institute of Nuclear Research in Russia and the Oak Ridge and Lawrence Livermore National Laboratories, US, elements 115 and 117 were both created in 2010. Both element names take their cues from geographical regions. Moscovium is named after Moscow, where the Joint Institute of Nuclear Research is based. Named after Tennessee, tennessine is a tribute to the region where a large amount of superheavy element research is conducted in the US.
The same group has also named element-118 oganesson (Og), in honour of the Russian nuclear physicist Yuri Oganessian who led the team that synthesised element-117.

Comment by Dr. Krishna Kumari Challa on June 11, 2016 at 8:21am

Excess carbon dioxide in the atmosphere? How do you tackle it? Scientists found a new and very promising solution!

Carbon dioxide emissions from an electric power plant have been captured, pumped underground and solidified—the first step toward safe carbon capture and storage, according to a paper published on 9th June, 2016, in the journal Science.

Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions

http://science.sciencemag.org/content/352/6291/1312 )

Scientists working at the Hellisheidi geothermal power plant near Reykjavik, Iceland, were able to pump the plant’s carbon dioxide-rich volcanic gases into deep underground basalt formations, mix them with water and chemically solidify the carbon dioxide.

When basalt—a volcanic rock that makes up roughly 70 percent of the earth’s surface—is exposed to carbon dioxide and water, a chemical reaction occurs, converting the gas to a chalk-like solid material. Scientists previously thought it wasn’t possible to capture and store carbon this way because earlier studies suggested it could take thousands of years for large amounts of carbon dioxide to be converted to chalk.

But Scientists, working on a project called CarbFix, were able to do it in two years.

Turning Carbon Emissions to Stone from Earth Institute on Vimeo.

Risks that carbon dioxide will escape into the atmosphere while it is being stored underground are greatly diminished because the solidification process occurs so quickly.

In the future, we could think of using this for power plants in places where there’s a lot of basalt—and there are many such places.

Scientists need to do more research into how different kinds of basalt affect the way carbon dioxide solidifies before the CarbFix process can be used worldwide.

Comment by Dr. Krishna Kumari Challa on June 10, 2016 at 6:00am

New 3-Parent IVF Technique found Safe in Lab
A study of a new 3-parent IVF technique designed to reduce the risk of mothers passing hereditary diseases to their babies has found it is likely to work well and lead to normal pregnancies, British scientists said.
Having completed pre-clinical tests involving more than 500 eggs from 64 donor women, researchers from Britain's Newcastle University said the technique, called “early pronuclear transfer”, does not harm early embryonic development.
The technique also showed promise in being able to "greatly reduce" the level of faulty mitochondria in the embryo, the researchers said - confirming hopes that it is likely to reduce the risk of mothers passing on debilitating and often life-limiting mitochondrial disease to their children.
"The key message is that we have found no evidence the technique is unsafe. Embryos created by this technique have all the characteristics to lead to a pregnancy," said Doug Turnbull, director of Newcastle's Center for Mitochondrial Research, who co-led the study.
"This study using normal human eggs is a major advance in our work towards preventing transmission of mitochondrial DNA disease," he added.
Pronuclear transfer involves intervening in the fertilization process to remove mitochondria, which act as tiny energy-generating batteries inside cells, and which, if faulty, can cause inherited fatal heart problems, liver failure, brain disorders, blindness and muscular dystrophy.
The treatment is known as "three-parent" in vitro fertilization (IVF) because the babies, born from genetically modified embryos, would have DNA from a mother, a father and from a female donor.
The results of this study are published on 8th June, 2016 in the journal Nature.

Comment by Dr. Krishna Kumari Challa on June 3, 2016 at 10:41am

New 'Einstein ring' discovered
The PhD student Margherita Bettinelli, of the Instituto de Astrofísica de Canarias (IAC) and the University of La Laguna (ULL), together with an international team of astrophysicists has recently discovered an unusual astronomical object: an Einstein ring. These phenomena, predicted by Einstein's theory of General Relativity, are quite rare but scientifically interesting. The interest is sufficiently strong that this object has been given its own name: the "The Canarias Einstein ring". The research was carried out by the Stellar Populations group at the IAC, led by Antonio Aparicio and Sebastian Hidalgo. The results were published in the international journal Monthly Notices of the Royal Astronomical Society.
An Einstein ring is a distorted image of a verydistant galaxy, which is termed "the source". The distortion is produced by the bending of the light rays from the source due to amassive galaxy, termed "the lens", lying between it and the observer. The stronggravitational field produced by the lens galaxy distorts the structure of space-time in its neighbourhood, and this does not only attract objects which have a mass, but also bends the paths of light. When the two galaxies are exactly aligned, the image of the more distant galaxy is converted into an almost perfect circle which surrounds the lens galaxy. The irregularities in the circle are due to asymmetries in the source galaxy.
This "Canarias Einstein ring" is one of the most symmetrical discovered until now and is almost circular, showing that the two galaxies are almost perfectly aligned, with a separation on the sky of only 0.2 arcseconds. The source galaxy is 10,000 million light years away from us. Due to the expansion of the Universe, this distance was smaller when its light started on its journey to us, and has taken 8,500 million years to reach us. We observe it as it was then: a blue galaxy which is beginning to evolve, populated by young stars which are forming at a high rate. The lens galaxy is nearer to us, 6,000 million light years away, and is more evolved. Its stars have almost stopped forming, and its population is old.

Comment by Dr. Krishna Kumari Challa on May 31, 2016 at 6:20am

Invisible waves move materials within aquatic ecosystems
Garbage, nutrients and tiny animals are pushed around, suspended in the world's oceans by waves invisible to the naked eye according to a new 3-D model developed by mathematicians at the University of Waterloo.

David Deepwell, a graduate student, and Professor Marek Stastna in Waterloo's Faculty of Mathematics have created a 3-D simulation that showcases how materials such phytoplankton, contaminants, and nutrients move within aquatic ecosystems via underwater bulges called mode-2 internal waves.

The simulation can help researchers understand how internal waves can carry materials over long distances. Their model was presented in the American Institute of Physics' journal Physics of Fluids earlier this week.

In the simulation, fluids of different densities are layered like the layers of a cake, creating an environment similar to that found in large aquatic bodies such as oceans and lakes. A middle layer of fluid, known as a pycnocline, over which the layers are closely packed together is created, and it is in this layer that materials tend to be caught.
When the fluid behind the gate is mixed and then the gate is removed, the mixed fluid collapses into the stratification because it is both heavier than the top layer and lighter than the bottom one.

Adding dye to the mixed fluid while the gate is in place simulates the material we want the mode-2 waves - the bulges in the pycnocline formed once the gate is taken away - to transport. We can then measure the size of the wave, how much dye remains trapped within it, and how well the wave carries its captured material.

It was found that the larger the bulge within the pycnocline, the larger the amount of material carried by the mode-2 wave.

While the researchers have discovered an optimal scenario in which the mode-2 internal wave survives and then transports material for as long a distance as possible, the internal waves can also break down due to small regions of instability, called lee instabilities, that form behind the wave. When the mode-2 wave breaks down, material is lost behind the wave. Ongoing experimental work and simulations are exploring how this type of wave interacts with underwater topography like sea mounts.

Comment by Dr. Krishna Kumari Challa on May 28, 2016 at 9:00am

Alzheimer’s and Infection connection?
New research by a team of investigators at Harvard leads to a startling hypothesis, which could explain the origins of plaque, the mysterious hard little balls that pockmark the brains of people with Alzheimer’s.
The idea that infections, including ones that are too mild to elicit symptoms, may produce a fierce reaction that leaves debris in the brain, causing Alzheimer’s. If it holds up, the hypothesis has major implications for preventing and treating this degenerative brain disease.
This is how it happens...
virus, fungus or bacterium gets into the brain, passing through a membrane — the blood-brain barrier — that becomes leaky as people age. The brain’s defense system rushes in to stop the invader by making a sticky cage out of proteins, called beta amyloid. The microbe, like a fly in a spider web, becomes trapped in the cage and dies. What is left behind is the cage — a plaque that is the hallmark of Alzheimer’s.

So far, the group has confirmed this hypothesis in neurons growing in petri dishes as well as in yeast, roundworms, fruit flies and mice. There is much more work to be done to determine if a similar sequence happens in humans, but plans — and funding — are in place to start those studies, involving a multicenter project that will examine human brains.

http://stm.sciencemag.org/content/8/340/340ra72

Comment by Dr. Krishna Kumari Challa on May 28, 2016 at 5:40am

There is a fight between cell phone lobby and other scientists working in the area. While the former say cell phones are safe, the latter have a different view on it.
Now a new study reignites the question and says ... Exposure to radio-frequency radiation of cell phones are responsible for tumor formation in rats in their experiments.

 http://biorxiv.org/content/biorxiv/early/2016/05/26/055699.full.pdf

US Federal scientists released partial findings Friday from a $25-million animal study that tested the possibility of links between cancer and chronic exposure to the type of radiation emitted from cell phones and wireless devices. The findings, which chronicle an unprecedented number of rodents subjected to a lifetime of electromagnetic radiation starting in utero, present some of the strongest evidence to date that such exposure is associated with the formation of rare cancers in at least two cell types in the brains and hearts of rats.

They chronically exposed rodents to carefully calibrated radio-frequency (RF) radiation levels designed to roughly emulate what humans with heavy cell phone use or exposure could theoretically experience in their daily lives. The animals were placed in specially built chambers that dosed their whole bodies with varying amounts and types of this radiation for approximately nine hours per day throughout their two-year life spans. “This is by far—far and away—the most carefully done cell phone bioassay, a biological assessment. This is a classic study that is done for trying to understand cancers in humans.

The researchers found that as the thousands of rats in the new study were exposed to greater intensities of RF radiation, more of them developed rare forms of brain and heart cancer that could not be easily explained away, exhibiting a direct doseresponse relationship. Overall, the incidence of these rare tumors was still relatively low, which would be expected with rare tumors in general, but the incidence grew with greater levels of exposure to the radiation. Some of the rats had glioma—a tumor of the glial cells in the brain—or schwannoma  of the heart. Furthering concern about the findings: In prior epidemiological studies of humans and cell phone exposure, both types of tumors have also cropped up as associations.

In contrast, none of the control rats—those not exposed to the radiation—developed such tumors. But complicating matters was the fact that the findings were mixed across sexes: More such lesions were found in male rats than in female rats. The tumors in the male rats “are considered likely the result of whole-body exposure” to this radiation, the study authors wrote. And the data suggests the relationship was strongest between the RF exposure and the lesions in the heart, rather than the brain: Cardiac schwannomas were observed in male rats at all exposed groups, the authors note. But no “biologically significant effects were observed in the brain or heart of female rats regardless of modulation.” 

Now what should you do? Take a few precautions...here are safety steps individuals can take: Using the speakerphone, keeping the phone on the desk instead of on the body and using a wired headset whenever possible would help limit RF exposure. Reduce the exposure as much as possible.

 

http://blogs.scientificamerican.com/guest-blog/it-s-premature-to-co...

http://blogs.scientificamerican.com/guest-blog/do-cell-phones-cause...

Comment by Dr. Krishna Kumari Challa on May 28, 2016 at 5:20am

A Fifth Force of Nature?
A laboratory experiment in Hungary has spotted an anomaly in radioactive decay that could be the signature of a previously unknown fifth fundamental force of nature, physicists say—if the finding holds up.
Attila Krasznahorkay at the Hungarian Academy of Sciences’s Institute for Nuclear Research in Debrecen, Hungary, and his colleagues reported their surprising result in 2015 on the arXiv preprint server, and this January in the journal Physical Review Letters. But the report – which posited the existence of a new, light boson only 34 times heavier than the electron—was largely overlooked.
Again on April 25, a group of US theoretical physicists brought the finding to wider attention by publishing its own analysis of the result on arXiv. The theorists showed that the data didn’t conflict with any previous experiments—and concluded that it could be evidence for a fifth fundamental force. Researchers there were sceptical but excited about the idea.
Gravity, electromagnetism and the strong and weak nuclear forces are the four fundamental forces known to physics—but researchers have made many as-yet unsubstantiated claims of a fifth. Over the past decade, the search for new forces has ramped up because of the inability of the standard model of particle physics to explain dark matter—an invisible substance thought to make up more than 80% of the Universe’s mass. Theorists have proposed various exotic-matter particles and force-carriers, including “dark photons”, by analogy to conventional photons that carry the electromagnetic force.
Krasznahorkay says his group was searching for evidence of just such a dark photon – but Feng’s team think they found something different. The Hungarian team fired protons at thin targets of lithium-7, which created unstable beryllium-8 nuclei that then decayed and spat out pairs of electrons and positrons. According to the standard model, physicists should see that the number of observed pairs drops as the angle separating the trajectory of the electron and positron increases. But the team reported that at about 140º, the number of such emissions jumps—creating a ‘bump’ when the number of pairs are plotted against the angle—before dropping off again at higher angles.

Krasznahorkay says that the bump is strong evidence that a minute fraction of the unstable beryllium-8 nuclei shed their excess energy in the form of a new particle, which then decays into an electron–positron pair. He and his colleagues calculate the particle’s mass to be about 17 megaelectronvolts (MeV).

 https://arxiv.org/abs/1504.01527

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.042501

Comment by Dr. Krishna Kumari Challa on May 25, 2016 at 7:06am

According to new calculations, Earth’s center is more than two years younger than its surface!
How is this possible?
In Einstein’s general theory of relativity, massive objects warp the fabric of spacetime, creating a gravitational pull and slowing time nearby. So a clock placed at Earth’s center will tick ever-so-slightly slower than a clock at its surface. Such time shifts are determined by the gravitational potential, a measure of the amount of work it would take to move an object from one place to another. Since climbing up from Earth’s center would be a struggle against gravity, clocks down deep would run slow relative to surface timepieces.

Over the 4.5 billion years of Earth’s history, the gradual shaving off of fractions of a second adds up to a core that’s 2.5 years younger than the planet’s crust, researchers estimate in the May European Journal of Physics.

The new calculation neglects geological processes, which have a larger impact on the planet’s age. For example, Earth’s core probably formed earlier than its crust. Instead, says study author Ulrik Uggerhøj of Aarhus University in Denmark, the calculation serves as an illustration of gravity’s influence on time — very close to home.

U. I. Uggerhoj, R. E. Mikkelsen, and J. Faye. The young centre of the EarthEuropean Journal of Physics. Vol. 37 May 2016, p. 035602. doi: 10.1088/0143-0807/37/3/035602.

The young centre of the Earth

http://iopscience.iop.org/article/10.1088/0143-0807/37/3/035602

Comment by Dr. Krishna Kumari Challa on May 25, 2016 at 6:49am

Attention deficit hyperactivity disorder (ADHD), usually diagnosed in children, may show up for the first time in adulthood, two recent studies suggest.
And not only can ADHD appear for the first time after childhood, but the symptoms for adult-onset ADHD may be different from symptoms experienced by kids, the researchers found.
Although the nature of symptoms differs somewhat between children and adults, all age groups show impairments in multiple domains – school, family and friendships for kids and school, occupation, marriage and driving for adults.
However, some newly diagnosed adults might have had undetected ADHD as children. Support from parents and teachers or high intelligence, for example, might prevent ADHD symptoms from emerging earlier in life.

And these people should take immediate medical assistance to alleviate their problems.

 

Members (22)

 
 
 

Badge

Loading…

© 2024   Created by Dr. Krishna Kumari Challa.   Powered by

Badges  |  Report an Issue  |  Terms of Service